Jump to content

2025 in paleontology

From Wikipedia, the free encyclopedia
List of years in paleontology (table)
In paleobotany
2022
2023
2024
2025
2026
2027
2028
In arthropod paleontology
2022
2023
2024
2025
2026
2027
2028
In paleoentomology
2022
2023
2024
2025
2026
2027
2028
In paleomalacology
2022
2023
2024
2025
2026
2027
2028
In reptile paleontology
2022
2023
2024
2025
2026
2027
2028
In archosaur paleontology
2022
2023
2024
2025
2026
2027
2028
In paleomammalogy
2022
2023
2024
2025
2026
2027
2028
In paleoichthyology
2022
2023
2024
2025
2026
2027
2028

Paleontology or palaeontology is the study of prehistoric life forms on Earth through the examination of plant and animal fossils.[1] This includes the study of body fossils, tracks (ichnites), burrows, cast-off parts, fossilised feces (coprolites), palynomorphs and chemical residues. Because humans have encountered fossils for millennia, paleontology has a long history both before and after becoming formalized as a science. This article records significant discoveries and events related to paleontology that occurred or were published in the year 2025.

Flora

[edit]

Plants

[edit]

Fungi

[edit]

Newly named fungi

[edit]
Name Novelty Status Authors Age Type locality Location Notes Image

Palaeomicrothyrium[2]

Gen. et sp. nov

Kundu et al.

Miocene

 India

A microthyriaceous fungus. The type species is P. miocenicum.

Veterisphaera[3]

Gen. et sp. nov

Valid

Moore & Krings

Devonian

Rhynie chert

 United Kingdom

A fungal reproductive unit. The type species is V. dumosa.

Zygosporium palaeomasonii[4]

Sp. nov

Kundu & Khan

Miocene

 India

A member of Xylariales belonging to the family Zygosporiaceae.

Mycological research

[edit]
  • Hodgson et al. (2025) present a global dataset of Cenozoic fungi records.[5]

Cnidarians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Arenactinia[6]

Gen. et sp. nov

Barroso et al.

Silurian

Ipu Formation

 Brazil

A sea anemone. The type species is A. ipuensis.

?Diploctenium chilensis[7]

Sp. nov

Valid

Collado & Galleguillos

Paleocene

Trihueco Formation

 Chile

A member of the family Meandrinidae.

Favosites? herbigi[8]

Sp. nov

Pohler, Hubmann & Kammerhofer

Devonian

Hunsrück Slate

 Germany

A tabulate coral.

Pleurodictyum nerydelgadoi[9]

Sp. nov

Valid

Domingos, Callapez & Legoinha

Devonian

 Portugal

A tabulate coral.

Sterictopathes seira[10]

Sp. nov

Valid

Hao, Han, Baliński, Brugler & Song in Hao et al.

Ordovician

Xiliangsi Formation

 China

A black coral.

Sutherlandia gzheliensis[11]

Sp. nov

Valid

Krutykh, Mirantsev & Rozhnov

Carboniferous (Gzhelian)

Moscow Syneclise

 Russia

A favositid coral. Published online in 2025, but the issue date is listed as December 2024.

Tavsenicoralla[12]

Gen. et sp. nov

Valid

Peel

Cambrian (Wuliuan)

Henson Gletscher Formation

 Greenland

A coralomorph cnidarian. The type species is T. avannaa.

Cnidarian research

[edit]

Arthropods

[edit]

Bryozoans

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Catalinella[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Lepralia" undata Reuss (1872).

Chenquepora[16]

Gen. et sp. nov

Valid

Iturra, López-Gappa & Pérez

Miocene (Langhian)

Chenque Formation

 Argentina

A member of Cheilostomatida belonging to the family Dysnoetoporidae. Genus includes new species C. miocenica.

Dionella asynithisti[15]

Sp. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan.

Distansescharella rancocasi[15]

Sp. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan.

Euritina laterospinata[15]

Sp. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan.

Fougaropora[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Stomatopora" temnichorda Ulrich & Bassler (1907).

Gabbhornia[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Flustrella" capistrata Gabb & Horn (1862).

Haplocephalopora foraminata[15]

Nom. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan.

Hemistylus rostratum[15]

Sp. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan.

Leiosellina pakhia[15]

Sp. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan.

Megaloramfozoon[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Membranipora" nematoporoides Ulrich & Bassler (1907).

Obsitacella[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Membranipora" jerseyensis Ulrich & Bassler (1907).

Paraptylopora gondwanica[17]

Sp. nov

Valid

Taboada, Pagani & Carrera

Carboniferous

Pampa de Tepuel Formation

 Argentina

Poricellaria karinae[15]

Sp. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan.

Quadrilateralia[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Membranipora" nellioides Canu & Bassler (1933).

Stavrozoon[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Lepralia" interposita Reuss (1872).

"Taractopora" klausbreitenbachi[15]

Nom. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan.

Temachia canubassleri[15]

Nom. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan.

Vincentownia[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Vincularia" acutirostris Canu & Bassler (1933).

Xenikipora[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Kleidionella" trabeculifera Canu & Bassler (1933).

Yadayadapora[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Beisselina" mortoni Canu & Bassler (1933).

Zachosella[15]

Gen. et comb. nov

Valid

Martha et al.

Paleocene

Vincentown Limesand

 United States
( New Jersey)

A cheilostome bryozoan. The type species is "Stichocados" mucronatus Canu & Bassler (1933).

Brachiopods

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Askepasma blysmochlidon[18]

Sp. nov

Valid

Castle-Jones et al.

Cambrian Stage 2

Sellick Hill Formation

 Australia

A member of Paterinata belonging to the group Paterinoidea.

Cyrtina koenigshofi[19]

Sp. nov

Valid

Jansen

Devonian (Emsian)

Hohenrhein Formation

 Germany

A member of Spiriferinida belonging to the family Cyrtinidae.

Iridistrophia maecuruensis[20]

Sp. nov

Rezende et al.

Devonian

Maecuru Formation

 Brazil

Katzeria[20]

Gen. et comb. nov

Junior homonym

Rezende et al.

Devonian

 Brazil

A new genus for "Strophomena" hoeferi Katzer. The generic name is preoccupied by Katzeria Mendes (1966).

Nalivkinathyris[21]

Gen. et sp. nov

Valid

Baranov, Kebrie-ee Zade & Blodgett

Devonian (Famennian)

Khoshyeilagh Formation

 Iran

A member of the family Athyrididae. The type species is N. damganensis. Published online in 2025, but the issue date is listed as December 2024.

Rugia stenius[22]

Sp. nov

Valid

Surlyk

Late Cretaceous (Maastrichtian)

 Denmark

A member of the family Chlidonophoridae.

Xystostrophia agassizi[20]

Comb. nov

(Rathbun)

Devonian

Ererê Formation

 Brazil

Moved from Streptorhynchus agassizi Rathbun (1874).

Brachiopod research

[edit]
  • A study on the taxonomic diversity of Mediterranean brachiopods throughout the Jurassic and Early Cretaceous, providing evidence of faunal losses coinciding with oceanic anoxic events, is published by Vörös & Szives (2025).[23]

Molluscs

[edit]

Echinoderms

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Brightonicystis salmoensis[24]

Comb. nov

Valid

(Sheffield, Ausich & Sumrall)

Ordovician (Hirnantian)

Ellis Bay Formation

 Canada
( Quebec)

A blastozoan belonging to the group Diploporita and the family Holocystitidae; moved from Holocystites salmoensis Sheffield, Ausich & Sumrall.

Brissus jonesi[25]

Sp. nov

Valid

Osborn, Portell & Mooi

Eocene

Ocala Limestone

 United States
( Florida)

A species of Brissus.

Cherbonniericrinus pliocenicus[26]

Sp. nov

Valid

Roux, Thuy & Gale

Pliocene

Indian Ocean (Rodrigues Ridge)

A crinoid belonging to the family Rhizocrinidae.

Durhamella tetrapora[25]

Sp. nov

Valid

Osborn, Portell & Mooi

Eocene

Ocala Limestone

 United States
( Florida)

A sea urchin belonging to the family Neolaganidae.

Eupatagus dumonti[25]

Sp. nov

Valid

Osborn, Portell & Mooi

Oligocene

Suwannee Limestone

 United States
( Florida)

A sea urchin belonging to the family Eupatagidae.

Gasterocoma americana[27]

Comb. nov

Valid

(Hall)

Devonian

 United States
( New York)

A crinoid belonging to the group Eucladida; moved from Myrtillocrinus americanus Hall.

Gasterocoma briareus[27]

Comb. nov

Valid

(Schultze)

Devonian

 Germany

A crinoid belonging to the group Eucladida; moved from Taxocrinus briareus Schultze.

Gasterocoma curta[27]

Comb. nov

Valid

(Schmidt)

Devonian

 Germany

A crinoid belonging to the group Eucladida; moved from Myrtillocrinus curtus Schmidt.

Gasterocoma eifeliana[27]

Comb. nov

Valid

(Müller)

Devonian

 Germany

A crinoid belonging to the group Eucladida; moved from Lecythocrinus eifelianus Müller.

Gasterocoma eifeliense[27]

Comb. nov

Valid

(Müller)

Devonian

 Germany

A crinoid belonging to the group Eucladida; moved from Ceramocrinus eifeliensis Müller.

Gasterocoma elongata[27]

Comb. nov

Valid

(Sandberger & Sandberger)

Devonian

 Germany

A crinoid belonging to the group Eucladida; moved from Myrtillocrinus elongatus Sandberger & Sandberger.

Gasterocoma extensa[27]

Comb. nov

Valid

(Wachsmuth & Springer)

Devonian

 United States
( Ohio)

A crinoid belonging to the group Eucladida; moved from Arachnocrinus extensus Wachsmuth & Springer.

Gasterocoma ignota[27]

Comb. nov

Valid

(Stauffer)

Devonian

 Canada
( Ontario)

A crinoid belonging to the group Eucladida; moved from Arachnocrinus ignotus Stauffer.

Gasterocoma knappi[27]

Comb. nov

Valid

(Wachsmuth & Springer)

Devonian

 United States
( Indiana)

A crinoid belonging to the group Eucladida; moved from Arachnocrinus knappi Wachsmuth & Springer.

Gasterocoma onondagensis[27]

Nom. nov

Valid

Bohatý, Ausich & Ebert

Devonian

 United States
( New York)

A crinoid belonging to the group Eucladida; a replacement name for Schultzicrinus(?) elongatus Springer.

Gasterocoma orbiculata[27]

Comb. nov

Valid

(Dubatolova)

Devonian

 Russia

A crinoid belonging to the group Eucladida; moved from Myrtillocrinus orbiculatus Dubatolova.

Gasterocoma (?) robusta[27]

Comb. nov

Valid

(Goldring)

Devonian

 United States
( New York)

A crinoid belonging to the group Eucladida; moved from Mictocrinus robustus Goldring.

Kukrusecrinus[28]

Gen. et sp. nov

Valid

Rozhnov

Ordovician (Darriwilian and Sandbian)

 Estonia

A crinoid belonging to group Camerata and to the family Colpodecrinidae. The type species is K. stellatus. Published online in 2025, but the issue date is listed as December 2024.

Moyacystis[24]

Gen. et comb. nov

Valid

Paul

Silurian

Lewisburg Formation

 United States
( Indiana)

A blastozoan belonging to the group Diploporita and the family Holocystitidae. The type species is "Osgoodicystis" cooperi Frest & Strimple in Frest et al. (2011).

Neoholaster[29]

Gen. et sp. nov

Valid

Borghi et al.

Miocene

 Italy

A sea urchin. Genus includes new species N. albensis.

Paraconocrinus rodriguesensis[26]

Sp. nov

Valid

Roux, Thuy & Gale

Pliocene

Indian Ocean (Rodrigues Ridge)

A crinoid belonging to the family Rhizocrinidae.

Persoonaster[30]

Gen. et comb. nov

Valid

Thuy, Numberger-Thuy & Gale

Early Jurassic (Hettangian)

 Belgium

A brittle star, a member of the stem group of Euryalida related to the Triassic genus Aspiduriella. The type species is "Mesophiomusium" kianiae Thuy (2005).

Plagiobrissus cassadyi[25]

Sp. nov

Valid

Osborn, Portell & Mooi

Oligocene

Marianna Limestone

 United States
( Florida)

A species of Plagiobrissus.

Prionocidaris robertsi[25]

Sp. nov

Valid

Osborn, Portell & Mooi

Eocene

Ocala Limestone

 United States
( Florida)

A species of Prionocidaris.

Rhyncholampas bao[25]

Sp. nov

Valid

Osborn, Portell & Mooi

Eocene

Ocala Limestone

 United States
( Florida)

A species of Rhyncholampas.

Rhyncholampas mariannaensis[25]

Sp. nov

Valid

Osborn, Portell & Mooi

Eocene

Ocala Limestone

 United States
( Florida)

A species of Rhyncholampas.

Schizaster carlsoni[25]

Sp. nov

Valid

Osborn, Portell & Mooi

Oligocene

Suwannee Limestone

 United States
( Florida)

A species of Schizaster.

Sprinkleoglobus spencensis[31]

Comb. nov

Valid

(Wen et al.)

Cambrian (Wuliuan)

Spence Shale

 United States
( Idaho
 Utah)

A member of Edrioasteroidea; moved from Totiglobus spencensis Wen et al. (2019).

Weisbordella inglisensis[25]

Sp. nov

Valid

Osborn, Portell & Mooi

Eocene

Ocala Limestone

 United States
( Florida)

A sea urchin belonging to the family Neolaganidae.

Weisbordella libum[25]

Sp. nov

Valid

Osborn, Portell & Mooi

Eocene

Ocala Limestone

 United States
( Florida)

A sea urchin belonging to the family Neolaganidae.

Echinoderm research

[edit]
  • Guenser et al. (2025) report evidence of concentration of research on the fossil record of stylophorans in the higher-income countries, regardless of the origin of the studied fossil material, throughout the history of the study of this group, including evidence that the majority of studies on fossils from the Global South published between 1925 and 1999 did not include local collaborators, and evidence of transfer of fossil material from countries of the Global South to countries of the Global North.[32]
  • An indeterminate solanocrinitid representing the first known opalized comatulid crinoid reported to date is described from the Cretaceous strata in South Australia by Salamon, Kapitany & Płachno (2025).[33]
  • Evidence from the study of the fossil record of Paleozoic echinoids, indicating that inclusion of unpublished museum specimens can strongly affect the results of the studies of biogeography and evolution of groups known from fossils, is presented by Dean & Thompson (2025).[34]

Hemichordates

[edit]

Hemichordate research

[edit]
  • The conclusions of the study of Saulsbury et al. (2023), which found that the survivorship of the Ordovician and Silurian graptoloids is consistent with the neutral theory of biodiversity and that this theory can be used to formulate hypotheses on changes in ancient ecosystems,[35] are contested by Johnson (2025)[36] and reaffirmed by Saulsbury et al. (2025).[37]
  • Gao, Tan & Wang (2025) consider the double-helical rotating locomotion as most likely for Dicellograptus, and argue that evolution from Jiangxigraptus to Dicellograptus involved selection for improvement in hydrodynamic characteristics.[38]
  • Evidence indicating that the decline of graptolite diversity in the Prague Basin during the Lundgreni Event was related to increased oxygenation of offshore environments is presented by Frýda & Frýdová (2025).[39]

Conodonts

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Acanthodistacodus[40]

Gen. et comb. nov

Valid

Tolmacheva, Dronov & Lykov

Ordovician

 Russia

The type species is "Scolopodus" consimilis Moskalenko, (1973); genus also includes A. compositus (Moskalenko, 1973). Published online in 2025, but the issue date is listed as December 2024.

Ancyrogondolella castillionensis[41]

Sp. nov

Orchard, Friedman & Mihalynuk

Late Triassic (Norian)

Selish Formation

 Canada
( British Columbia)

Ancyrogondolella ferrata[41]

Sp. nov

Orchard, Friedman & Mihalynuk

Late Triassic (Norian)

Selish Formation

 Canada
( British Columbia)

Borinella dibucoensis[42]

Sp. nov

Li et al.

Early Triassic (Olenekian)

 China

Borinella? prima[43]

Sp. nov

Leu & Goudemand in Leu et al.

Early Triassic (Olenekian)

Khunamuh Formation

 Canada
( British Columbia)
 India
 Oman

A member of the family Gondolellidae.

Neospathodus aristatus[43]

Sp. nov

Leu & Goudemand in Leu et al.

Early Triassic

Khunamuh Formation

 China
 India
 Japan

Neospathodus guryulensis[43]

Sp. nov

Leu & Goudemand in Leu et al.

Early Triassic

Khunamuh Formation

 India

Paltodus simplex[44]

Sp. nov

Zhen et al.

Cambrian–Ordovician transition

 Australia

Variabiloconus delicatus[44]

Sp. nov

Zhen et al.

Cambrian–Ordovician transition

 Australia

Conodont research

[edit]
  • A study on the morphological variation of oral elements of members of the genus Polygnathus from the Devonian/Carboniferous transition is published by Nesme et al. (2025), who find evidence of reduced morphological variation in larger elements than in smaller ones, interpreted as indicative of increase in functional constraints on large-sized Polygnathus elements.[45]
  • A study on the phylogenetic relationships, biogeography and biostratigraphy of members of the genus Gnathodus is published by Wang, Hu & Wang (2025).[46]

Fish

[edit]

Amphibians

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Xerocephalella[47]

Gen. et comb. nov

Valid

Muzzopappa, Bargo & Vizcaíno

Paleocene and Eocene

Salamanca Formation

 Argentina

A new genus for "Calyptocephalella" sabrosa Muzzopappa et al. (2020); genus also includes "Calyptocephalella" pichileufensis Gómez, Báez & Muzzopappa (2011).

Amphibian research

[edit]

Reptiles

[edit]

Synapsids

[edit]

Non-mammalian synapsids

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Arboroharamiya fuscus[59]

Sp. nov

Valid

Li et al.

Jurassic

Tiaojishan Formation

 China

Bienotheroides wucaiensis[60]

Sp. nov

Liu et al.

Late Jurassic

Shishugou Formation

 China

A tritylodontid cynodont.

Synapsid research

[edit]
  • Evidence from a comparative study of skull anatomy of non-mammalian synapsids and extant chameleons, interpreted as consistent with the presence a mandibular middle ear in early synapsids, is presented by Olroyd & Kopperud (2025).[61]
  • A study on the diversity of varanopids throughout their evolutionary history is published by Laurin & Didier (2025), who find no evidence for an end-Kungurian extinction event, and interpret the extinction of varanopids as likely related to the Capitanian mass extinction event.[62]
  • Nieke, Fröbisch & Canoville (2025) study the histology of limb bones of Suminia getmanovi, interpreted as consistent with an arboreal lifestyle.[63]
  • Macungo, Benoit & Araújo (2025) describe fossil material of Inostrancevia africana from the Permian strata of the K6a2 Member of the Metangula graben (Mozambique), supporting its correlation with the Daptocephalus Assemblage Zone in South Africa.[64]
  • Kerber et al. (2025) describe traversodontid postcranial material from the Pinheiros-Chiniquá Sequence at the Linha Várzea 1 site (Brazil), representing a morphotype distinct from other traversodontid postcranial remains from this locality.[65]
  • A study on the bone histology of Luangwa drysdalli and Scalenodon angustifrons, providing evidence of different life histories of the studied cynodonts, is published by Kulik (2025).[66]
  • Medina et al. (2025) provide new information on the anatomy of the cranial endocast of Massetognathus pascuali, and describe the maxillary canal of the studied cynodont.[67]
  • A study on changes in the skull anatomy of Siriusgnathus niemeyerorum during its ontogeny is published by Roese-Miron & Kerber (2025).[68]
  • New specimen of Exaeretodon riograndensis, providing new information on the postcranial anatomy of members of this species, is described by Kerber et al. (2025).[69]
  • New information on the skull anatomy of Trucidocynodon riograndensis is provided by Kerber et al. (2025).[70]
  • Dotto et al. (2025) describe fossil material of a prozostrodontian cynodont from the Upper Triassic strata from the Buriol site (Hyperodapedon Assemblage Zone, Brazil), providing new information on the morphological diversity of teeth of Carnian probainognathians.[71]
  • New information on the anatomy of Yuanotherium minor is provided by Liu, Ren & Mao (2025).[72]
  • Hai et al. (2025) describe a mandible of a juvenile specimen of Sinoconodon rigneyi from the Lower Jurassic Lufeng Formation (China), providing new information on tooth replacement in members of this species.[73]
  • Tumelty & Lautenschlager (2025) study the skull anatomy of Hadrocodium wui, and interpret the studied mammaliaform as not fully fossorial.[74]

Mammals

[edit]

Other animals

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Archaeaphorme[75]

Gen. et sp. nov

Botting et al.

Ordovician (Hirnantian)

Anji Biota

 China

A hexactinellid sponge. The type species is A. conica.

Charnia ewinoni[76]

Sp. nov

Valid

Pasinetti et al.

Ediacaran

 Canada
( Newfoundland and Labrador)

Crateromorpha? (Neopsacas?) macrospicula[75]

Sp. nov

Botting et al.

Ordovician (Hirnantian)

Anji Biota

 China

A hexactinellid sponge.

Crestjahitus groenlandicus[12]

Sp. nov

Valid

Peel

Cambrian (Wuliuan)

Henson Gletscher Formation

 Greenland

A member of Hyolithida.

Cryptosiphon oboloides[77]

Sp. nov

Valid

Vinn in Vinn et al.

Cambrian (Furongian)

Tsitre Formation

 Estonia

A possible polychaete.

Cryptothelion sujkowskii[78]

Sp. nov

Valid

Świerczewska-Gładysz & Jurkowska

Late Cretaceous (Campanian)

 Poland

A demosponge.

Elegantilites custos[79]

Sp. nov

Valent, Fatka & Budil

Ordovician

Dobrotivá Formation

 Czech Republic

A member of Hyolitha.

Eorosselloides[75]

Gen. et sp. nov

Botting et al.

Ordovician (Hirnantian)

Anji Biota

 China

A hexactinellid sponge. The type species is E. antiquus.

Fimbulispina[80]

Gen. et sp. nov

Valid

Peel

Cambrian (Drumian)

Fimbuldal Formation

 China
 Greenland

A relative of gnathiferans, particularly resembling Dakorhachis. The type species is F. laurentica.

Juracanthocephalus[81]

Gen. et sp. nov

Luo et al.

Middle Jurassic

Jiulongshan Formation

 China

A member of Acanthocephala. The type species is J. daohugouensis.

Longgangia[82]

Gen. et sp. nov

Wang et al.

Cambrian (Wuliuan)

Mantou Formation

 China

A probable annelid. The type species is L. bilamellata.

Lophiostroma leizunia[83]

Sp. nov

Jeon et al.

Ordovician

 China

A member of Stromatoporoidea.

Niquivilispongia[84]

Gen. et sp. nov

Valid

Carrera, Botting & Cañas

Ordovician (Dapingian)

San Juan Formation

 Argentina

A sponge belonging to the group Heteractinida, possibly a member of the family Astraeospongiidae. The type species is N. asteria.

Primocyathus[85]

Gen. et sp. nov

Wang & Xiaoin Wang et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

 China

A member of Archaeocyatha belonging to the group Ajacicyathida. The type species is P. uniseriatus.

Pseudanoxycalyx[75]

Gen. et sp. nov

Botting et al.

Ordovician (Hirnantian)

Anji Biota

 China

A hexactinellid sponge. The type species is P. verrucosus.

Scalidodendron[86]

Gen. et sp. nov

Mussini & Butterfield

Cambrian

Hess River Formation

 Canada

A scalidophoran. The type species is S. crypticum.

Sinocyathus[85]

Gen. et sp. nov

Wang & Xiaoin Wang et al.

Cambrian (Fortunian)

Kuanchuanpu Formation

 China

A member of Archaeocyatha belonging to the group Ajacicyathida. The type species is S. biseriatus.

Other animal research

[edit]
  • Evidence of similarity of growth and mortality dynamics of Parvancorina minchami and extant small marine invertebrates is presented by Ivantsov et al. (2025).[87]
  • Zhao et al. (2025) describe disc-like fossils from the Ediacaran Dengying Formation (China), preserving possibly remnants of the perioral musculature and innervation, and interpreted as probable fossils of eumetazoan-grade organisms.[88]
  • Dunn, Donoghue & Liu (2025) describe a population of Fractofusus andersoni from the Mistaken Point Ecological Reserve (Newfoundland, Canada), and present a model of growth in the studied taxon.[89]
  • Wu et al. (2025) describe fossil material of Charnia masoni and C. gracilis from the Ediacaran Zhoujieshan Formation (China), extending known geographic distribution of Charnia and demonstrating that it likely persisted into the latest Ediacaran.[90]
  • A study on possible causes of decline of stromatoporoid diversity during the early Devonian is published by Stock et al. (2025).[91]
  • Evidence from the study of Cambrian scalidophoran fossils, interpreted as indicating that the ventral nerve cord was ancestrally unpaired in scalidophorans, priapulids and possibly ecdysozoans in general, is presented by Wang et al. (2025).[92]
  • Slater (2025) describes Cambrian protoconodonts preserved as small carbonaceous fossils from the Lontova Formation (Estonia) and from the Borgholm Formation (Sweden), and interprets the studied fossils as indicating that bilaterians with chaetognath-like grasping spines diverged by the latest Ediacaran.[93]
  • Jamison-Todd et al. (2025) study trace fossils in marine reptile bones from the Upper Cretaceous Chalk Group (United Kingdom), produced by bone-eating worms and interpreted as likely indicative of high species diversity of Osedax during the early Late Cretaceous, and name new ichnotaxa Osspecus eunicefootia, O. morsus, O. campanicum, O. arboreum, O. automedon, O. frumentum and O. panatlanticum.[94]
  • A study on fossil material of the tommotiid Lapworthella fasciculata from the Cambrian strata in Australia is published by Bicknell et al. (2025), who report evidence of increase of thickness of sclerites of L. fasciculata and increase of the frequency of perforated sclerites through time, and interpret these findings as the oldest evidence of evolutionary arms race between predator and prey reported to date.[95]
  • Vinn et al. (2025) describe soft body impressions of Devonian tentaculitids from Armenia, and interpret reconstructed muscle system of tentaculitids as supporting their placement within Lophotrochozoa and possibly within Lophophorata.[96]
  • New information on the morphology and growth pattern of the microconchid species Aculeiconchus sandbergi is provided by Opitek et al. (2025).[97]
  • Ma et al. (2025) describe fossil material of Pomatrum cf. P. ventralis from the Balang Formation (China), extending known range of this species to Cambrian Stage 4 and representing its first known record from outside the Chengjiang Biota.[98]

Foraminifera

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Bolivilongella[99]

Gen. et 2 sp. nov

Valid

Ismail et al.

Miocene

 Egypt

A member of Bolivinoididae. Genus includes B. longata and B. semilongata.

Bulbobaculites attashensis[100]

Sp. nov

Valid

Jalloh & Kaminski in Jalloh et al.

Middle Jurassic (Callovian)

Dhruma Formation

 Saudi Arabia

A member of Lituolida belonging to the family Ammobaculinidae.

Calvezina anatolica[101]

Sp. nov

Altıner et al.

Permian (Changhsingian)

 Turkey

A member of Nodosariata belonging to the family Robuloididae.

Canalispina zagrosia[102]

Sp. nov

Ghanbarloo, Safari & Görmüş

Late Cretaceous (Campanian to Maastrichtian)

Tarbur Formation

 Iran

A member of the family Siderolitidae.

Eomarginulinella galinae[101]

Sp. nov

Altıner et al.

Permian (Changhsingian)

 Turkey

A member of Nodosariata belonging to the family Robuloididae.

Flabellogaudryina[103]

Gen. et sp. nov

Valid

Kaminski & Korin

Eocene

Rashrashiyah Formation

 Saudi Arabia

A member of Pseudogaudryininae. The type species is F. sirhanensis.

Glomomidiellopsis? okayi[101]

Sp. nov

Altıner et al.

Permian (Capitanian to Changhsingian)

 Cambodia
 Turkey

A member of Miliolata belonging to the family Hemigordiopsidae.

Hensonidendra[12]

Gen. et 2 sp. nov

Valid

Peel

Cambrian (Wuliuan)

Henson Gletscher Formation

 Greenland

An organism of uncertain affinities, with similarities to cyanobacteria from the family Epiphytaceae. The type species is H. tavsenica; genus also includes H. hensoniensis.

Laugephakos[12]

Gen. et sp. nov

Valid

Peel

Cambrian (Wuliuan)

Henson Gletscher Formation

 Greenland

Tubes of an organism of uncertain affinities. The type species is L. groenlandicus.

Laxoendothyra parakosvensis gracilis[104]

Ssp. nov

Okuyucu et al.

Devonian-Carboniferous transition

Yılanlı Formation

 Turkey

Loftusia tarburica[102]

Sp. nov

Ghanbarloo, Safari & Görmüş

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A member of the family Loftusiidae.

Omphalocyclus tarburensis[102]

Sp. nov

Ghanbarloo, Safari & Görmüş

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A member of the family Orbitoididae.

Paraglobivalvulina? intermedia[101]

Sp. nov

Altıner et al.

Permian (Capitanian to Changhsingian)

 Turkey

A member of Fusulinata belonging to the family Globivalvulinidae.

Plectorobuloides[101]

Gen. et sp. nov

Altıner et al.

Permian (Changhsingian)

 Turkey

A member of Nodosariata belonging to the family Robuloididae. The type species is P. taurica.

Pseudocryptomorphina[101]

Gen. et sp. nov

Altıner et al.

Permian (Changhsingian)

 Turkey

A member of Nodosariata, possibly belonging to the family Robuloididae. The type species is P. amplimuralis.

Pseudomidiella sahini[101]

Sp. nov

Altıner et al.

Permian (Changhsingian)

 Turkey

A member of Miliolata belonging to the family Midiellidae.

Pseudorobuloides[101]

Gen. et sp. nov

Altıner et al.

Permian (Lopingian)

 Iran
 Turkey

A member of Nodosariata belonging to the family Robuloididae. The type species is P. reicheli.

Robuloides lata[101]

Sp. nov

Altıner et al.

Permian (Changhsingian)

 Turkey

A member of Nodosariata belonging to the family Robuloididae.

Robuloides? rettorii[101]

Sp. nov

Altıner et al.

Permian (Changhsingian)

 Turkey

A member of Nodosariata belonging to the family Robuloididae.

Robustopachyphloia farinacciae[101]

Sp. nov

Altıner et al.

Permian (Changhsingian)

 Turkey

A member of Nodosariata belonging to the family Pachyphloiidae.

Siderolites persica[102]

Sp. nov

Ghanbarloo, Safari & Görmüş

Late Cretaceous (Maastrichtian)

Tarbur Formation

 Iran

A member of the family Siderolitidae.

Foraminiferal research

[edit]
  • A study on the impact of ocean chemistry changes on evolution of foraminiferal wall types throughout the Phanerozoic is published by Faulkner et al. (2025), who find that changes of foraminiferal wall types were mostly driven by short-term ocean chemistry changes.[105]
  • Evidence from the study of Carnian foraminiferal assemblages from the Erguan section in Guizhou and Quxia section in South Tibet (China), interpreted as indicating that there were no significant extinctions of foraminifera during the Carnian pluvial episode in the studied regions, is presented by Li et al. (2025).[106]
  • A study on the composition of planktic foraminiferal assemblages from the Atlantic Ocean during the Eocene, providing evidence that they lacked resilience during the Middle Eocene Climatic Optimum, is published by Sigismondi et al. (2025).[107]
  • Evidence of changes in morphology of members of nummulites from the Pande Formation (Tanzania), interpreted as likely related to environmental changes during the Eocene–Oligocene transition, is presented by Koorapati, Moon & Cotton (2025).[108]

Other organisms

[edit]
Name Novelty Status Authors Age Type locality Location Notes Images

Baltisphaeridium iranense[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

An acritarch.

Baltisphaeridium tillabadensis[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

An acritarch.

Belonechitina iranense[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

A chitinozoan.

Bullatosphaera? colliformis[110]

Sp. nov

Valid

Ouyang et al.

Ediacaran

Doushantuo Formation

 China

An acanthomorph acritarch.

Cornuferifusa persianense[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

An acritarch.

Cycliomedusa[111]

Sp. nov

Zhao et al.

Ediacaran

Dengying Formation

 China

A discoidal macrofossil, reminiscent of the medusae and other medusoid forms from the Neoproterozoic. The type species is C. jiangchuanensis.

Dorsennidium iranense[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

An acritarch.

Eotylotopalla inflata[110]

Sp. nov

Valid

Ouyang et al.

Ediacaran

Doushantuo Formation

 China

An acanthomorph acritarch.

Excultibrachium jahandidehii[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

An acritarch.

Navifusa caspiansis[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

An acritarch.

Nyfrieslandia kelimoli[112]

Sp. nov

Wu et al.

Ordovician (Darriwilian)

Kelimoli Formation

 China

A radiolarian.

Oppilatala persianense[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

An acritarch.

Pirea shahroudensis[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

An acritarch.

Pistillachitina alborzensis[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

A chitinozoan.

Pistillachitina iranense[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

A chitinozoan.

Stellechinatum khoshyeilaghensis[109]

Sp. nov

Ghavidel-Syooki

Ordovician

Ghelli Formation

 Iran

An acritarch.

Verrucosphaera? undulata[110]

Sp. nov

Valid

Ouyang et al.

Ediacaran

Doushantuo Formation

 China

An acanthomorph acritarch.

Research on other organisms

[edit]
  • Review of the fossil record of the late Paleoproterozoic to the latest Tonian eukaryotes and a study on their diversity patterns is published by Porter et al. (2025), who find the fossil evidence insufficient to conclude whether the Tonian radiation of eukaryotes was a real event or an artifact of sampling of the fossil record.[113]
  • Saint Martin et al. (2025) identify body fossils of Palaeopascichnus in the Neoproterozoic Histria Formation (Romania), providing evidence of the Ediacaran age of the studied formation.[114]

History of life in general

[edit]
  • Evidence from experiments with algal-derived particulate matter in conditions similar to those of the late Neoproterozoic water column, interpreted as indicating that the appearance of algal particulate matter at the seafloor during the Neoproterozoic rise of the algae likely stimulated growth and activity of phagotrophs living in the anoxic conditions, is presented by Mills et al. (2025).[115]
  • Evidence from the study of two Ediacaran communities from the Mistaken Point Formation (Canada), indicative of similar composition but different ecological dynamics of the studied communities, is presented by Mitchell et al. (2025).[116]
  • Hammarlund et al. (2025) argue that expansion of sunlit benthic habitats with severe daily oxygen fluctuations during the Neoproterozoic-Paleozoic transition might have promoted the radiation of organisms tolerant to oxygen variability.[117]
  • Review of changes of organismal and community ecology during the Ediacaran-Cambrian transition is published by Mitchell & Pates (2025).[118]
  • Evidence of changes of composition of fossil assemblages from chert Lagerstätten from the Yangtze craton (China) during the Ediacaran-Cambrian transition is presented by Luo & Zhu (2025).[119]
  • Reijenga & Close (2025) study the fossil record of Phanerozoic marine animals, and argue that purported evidence of a relationship between the duration of studied clades and their rates of origination and extinction can be explained by incomplete fossil sampling.[120]
  • Review of the ecology and evolution of endobionts associated with corals throughout the Phanerozoic is published by Vinn, Zapalski & Wilson (2025).[121]
  • Maletz et al. (2025) revise Paleozoic fossils with similarities to feathers, and interpret the studied fossil material as including remains of macroalgae, hydrozoan cnidarians and graptolites.[122]
  • Evidence of the impact of the appearance and subsequent extinction of archaeocyath reefs on the abundance of Cambrian animals is presented by Pruss (2025).[123]
  • Revision of the Cambrian fauna from the Sæterdal Formation (Greenland), including fossils of trilobites, brachiopods and a hyolith, is published by Peel (2025).[124]
  • Mussini & Butterfield (2025) report the discovery of a new assemblage of small carbonaceous fossils from the Cambrian Hess River Formation (Northwest Territories, Canada), including remains of wiwaxiids, annelids, brachiopods, chaetognaths, scalidophorans, arthropods and pterobranchs.[125]
  • A Burgess-Shale-type fauna occupying a peritidal habitat near the outer margin of a sea is described from the Cambrian (Guzhangian) Pika Formation (Alberta, Canada) by Mussini, Veenma & Butterfield (2025), providing new information ecological tolerances of Cambrian marine animals.[126]
  • Early evidence of colonization of gastropod shells by corals is reported from the Ordovician strata in Estonia by Vinn et al. (2025).[127]
  • Evidence from the study of the trace fossil record ranging from the Ediacaran to the Devonian, interpreted as indicative of establishment of modern-style deep-marine benthic ecosystem during the Ordovician after 100 million years of protracted evolution, is presented by Buatois et al. (2025).[128]
  • Vinn et al. (2025) report new evidence of symbiotic associations between worms and tabulate corals from the Ordovician and Silurian strata in Estonia, including evidence of symbiotic relationships between tabulates and cornulitids spanning from the late Katian to the Ludfordian.[129]
  • Zong et al. (2025) report the discovery of a new assemblage of well-preserved fossils (the Huangshi Fauna) in the Silurian (Rhuddanian) strata in south China, including fossils of sponges, cephalopods, arthropods and carbon film fossils of uncertain identity.[130]
  • The first mesophotic coral reef ecosystem reported from the Paleozoic of eastern Gondwana, preserving fossil remains of corals and a diversified fish fauna, is described from the Devonian (Emsian) strata of the shore of Lake Burrinjuck (Taemas Formation; New South Wales, Australia) by Zapalski et al. (2025).[131]
  • A study on the mandibular morphology of Devonian to Permian stem and crown tetrapods is published by Berks et al. (2025), who report evidence of a spike in morphological diversity in the Gzhelian, interpreted as related to the evolution of herbivory.[132]
  • A study on the fossil record of conodonts and carbon isotope of bulk rock from the Naqing, Narao and Shanglong sections in southern Guizhou (China), providing evidence of timing of biotic changes during the Moscovian and Kasimovian, is published by Wang et al. (2025).[133]
  • Natural casts of burrows that were possibly produced by small tetrapods are described from the Permian (Asselian) Słupiec Formation (Poland) by Sadlok (2025).[134]
  • Evidence from the study of animal and plant fossils from the Lower Triassic Heshanggou Formation (China), indicative of the presence of a diverse riparian ecosystem 2 million years after the Permian–Triassic extinction event, is presented by Guo et al. (2025).[135]
  • Review of the fossil record of Triassic terrestrial tetrapods from the Central European Basin is published by Mujal et al. (2025).[136]
  • A study on the assemblage of fossil teeth from the Middle Triassic (Anisian) strata from the Montseny area (Spain), providing evidence of presence of capitosaur temnospondyls, procolophonids, archosauromorphs and indeterminate diapsids, is published by Riccetto et al. (2025).[137]
  • Evidence of similarity of processes of reef rubble consolidation and regeneration observed in Late Triassic reefs from the Dachstein platform (Austria) and in modern coral reefs is presented by Godbold et al. (2025).[138]
  • Jésus et al. (2025) describe new vertebrate fossil material from the Upper Triassic Ørsted Dal Formation (Greenland), including the first records of a doswelliid and members of the genera Lissodus and Rhomphaiodon from the Upper Triassic strata from Greenland reported to date.[139]
  • Stone et al. (2025) compare the composition of Pliensbachian reefs from lagoonal and platform edge settings in the Central High Atlas (Morocco), and identify environmental differences resulting in development of two different reef types.[140]
  • Evidence from the study of the fossil record of Early Jurassic brachiopods, gastropods and bivalves from the epicontinental seas of the north-western Tethys Ocean, indicative of a relationship between the thermal suitability of the studied animals and changes of their occupancy in response to climate changes during the Pliensbachian and Toarcian, is presented by Reddin et al. (2025).[141]
  • Petrizzo et al. (2025) compare the impact of the Cenomanian-Turonian boundary event on different groups of marine biocalcifiers, and report evidence of higher vulnerability of large benthic foraminifera and rudist bivalves compared to other studied groups, likely caused by extremely high and fluctuating sea surface temperature.[142]
  • Perea et al. (2025) report the discovery of bioerosion traces on dinosaur bones from the Upper Cretaceous Guichón Formation (Uruguay), interpreted as likely produced by beetles (probably dermestids) and small vertebrate scavengers (possibly multituberculate mammals).[143]
  • Close & Reijenga (2025) study the species–area relationships in North American terrestrial vertebrate assemblages during the Cretaceous-Paleogene transition, and report evidence of a large increase in regional-scale diversity of the studied vertebrates in the earliest Paleogene (primarily driven by the diversification of mammals), resulting in the earliest Paleogene assemblages being regionally homogenized to a lesser degree than the latest Cretaceous ones.[144]
  • Description of bird and squamate tracks from the Eocene Clarno Formation and feliform and ungulate tracks from the Oligocene John Day Formation (John Day Fossil Beds National Monument, Oregon, United States) is published by Bennett, Famoso & Hembree (2025).[145]
  • Revision of the Pleistocene assemblage from the Cumberland Bone Cave (Maryland, United States) and a study on its paleoecology is published by Eshelman et al. (2025).[146]
  • Lallensack, Leonardi & Falkingham (2025) organized a comprehensive list of 277 terms used in tetrapod trace fossil research.[147]

Other research

[edit]
  • Review of the Earth system processes and their impact on the evolution of life during the "Boring Billion" is published by Mukherjee et al. (2025).[148]
  • Evidence of a link between marine iodine cycle and stability of the ozone layer throughout Earth's history, resulting in an unstable ozone layer until approximately 500 million years ago that might have restricted complex life to the ocean prior to its stabilization, is presented by Liu et al. (2025).[149]
  • Evidence of slow accumulation of Australian sediments preserving Archean mudrocks with high organic content is presented by Lotem et al. (2025), who interpret their findings as consistent with lower primary productivity in Archean than in present times.[150]
  • Farrell et al. (2025) present a global Furongian time scale, date Furongian as beginning approximately 494,5 million years ago and ending approximately 487,3 million years ago, and interpret the Steptoean positive carbon isotope excursion as lasting approximately 2,6 million years.[151]
  • Cowen et al. (2025) study the geochemistry of dental tissue of Devonian fish fossils from Svalbard (Norway) and Cretaceous lungfish and plesiosaur fossils from Australia, and interpret their findings as indicative of preservation of the primary chemical composition of the bioapatite in the studied fossils.[152]
  • Evidence from the study of Devonian-Carboniferous boundary sections in Canada and China, interpreted as indicative of occurrence of photic zone euxinia linked to extinctions of marine organisms during the Hangenberg event, is presented by Wang et al. (2025).[153]
  • Mann et al. (2025) study the depositional setting of the lost vertebrate deposit southwest of the Danville city (Illinois, United States), preserving some of the oldest known diadectomorph and captorhinid fossils reported to date, and assign the fossil assemblage from the studied site to the Inglefield Sandstone Member below the Macoupin Limestone Member of the Patoka Formation (Kasimovian, Carboniferous).[154]
  • Evidence indicating that the volcanic activity that formed the Ontong Java Nui basaltic plateau complex was synchronous with the Selli Event is presented by Matsumoto et al. (2025).[155]
  • Albert et al. (2025) provide new information on the Cretaceous Densuș-Ciula Formation (Romania), reporting evidence indicating that the lower part of the formation covers part of the Campanian, and evidence indicating that the shift from marine to continental deposition recorded in the formation happened by middle late Campanian.[156]
  • Evidence of a link between large-scale Deccan Traps volcanism and global changes in climate near the end of the Cretaceous is presented by Westerhold et al. (2025).[157]
  • Rodiouchkina et al. (2025) report evidence interpreted as indicating that the amount of sulfur released by Chicxulub impact was approximately 5 times lower than inferred from previous estimates, resulting in milder impact winter scenario during the Cretaceous-Paleogene transition.[158]
  • Bai et al. (2025) study the lithostratigraphy and biostratigraphy of the Eocene fossil assemblage from the deposits of the Bayan Obo and Jhama Obo sections in the Shara Murun region (Inner Mongolia, China), correlate them with other Paleogene sections from the Erlian Basin, and propose the subdivision of the Ulangochuian Asian land mammal age.[159]
  • New information on the chronology of the Miocene fossil sites from central Anatolia (Turkey) is provided by Tholt et al. (2025).[160]
  • Lindahl et al. (2025) review the utility of paleogenomics for the studies of biodiversity trends throughout the Quaternary.[161]
  • A new integrative script for TNT which can be used to analyze the phylogenetic placement of fossil taxa on a reference tree is presented by Catalano et al. (2025).[162]

Paleoclimate

[edit]
  • Evidence of low atmospheric CO2 levels throughout the main phase of the late Paleozoic icehouse, and of rapid increase in atmospheric CO2 between 296 and 291 million years ago, is presented by Jurikova et al. (2025).[163]
  • Lu et al. (2025) report evidence from the study of palynological assemblages and clay mineralogy of the Kazuo Basin (Liaoning, China) indicative of a dry and hot climatic event during the early Aptian, interpreted as likely synchronous with the Selli Event.[164]
  • Markowska et al. (2025) present evidence of recurrent humid intervals in the arid Arabian interior over the past 8 million years, and argue that those wet episodes might have enabled dispersals of mammals between Africa and Eurasia.[165]
  • Evidence indicating that abrupt climate changes during the Last Glacial Period increased pyrogenic methane emissions and global wildfire extent is presented by Riddell-Young et al. (2025).[166]
  • Geochemical evidence from the study of a speleothem from the Herbstlabyrinth Cave (Germany), interpreted as indicating that the Laacher See eruption was not directly linked to the Younger Dryas cooling in Greenland and Europe, is presented by Warken et al. (2025).[167]

References

[edit]
  1. ^ Gini-Newman, Garfield; Graham, Elizabeth (2001). Echoes from the past: world history to the 16th century. Toronto: McGraw-Hill Ryerson Ltd. ISBN 9780070887398. OCLC 46769716.
  2. ^ Kundu, S.; Tarafder, E.; Karunarathna, S. C.; Khan, M. A. (2025). "The discovery of a new foliicolous microthyriaceous fungus associated with Quercus L. from the Siwalik (Miocene) of the Western Himalaya". New Zealand Journal of Botany. doi:10.1080/0028825X.2024.2445285.
  3. ^ Moore, Z.; Krings, M. (2025). "Morphological diversity of fungal reproductive units in the Lower Devonian Rhynie cherts of Scotland: a new type with a two-layered hyphal mantle". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 313 (3): 233–243. doi:10.1127/njgpa/2025/1232.
  4. ^ Kundu, S.; Khan, M. A. (2025). "A novel fossil species of Zygosporium from Siwalik sediments (Miocene) of Himachal Pradesh, Western Himalaya, India". Nova Hedwigia. doi:10.1127/nova_hedwigia/2025/1118.
  5. ^ Hodgson, E.; McCoy, J.; Webber, K.; Nuñez Otaño, N.; O'Keefe, J.; Pound, M. (2025). "A global dataset of fossil fungi records from the Cenozoic". Scientific Data. 12. 316. doi:10.1038/s41597-025-04553-4. PMC 11845674. PMID 39984506.
  6. ^ Barroso, F. R. G.; Viana, M. S. S.; Agostinho, S.; Daly, M.; Fairchild, T. R.; Marques, A. C.; Pacheco, M. L. A. F. (2025). "Insights into the lifestyle and preservation of Arenactinia ipuensis n. gen. et n. sp. (Anthozoa, Actiniaria) from the Early Silurian (Ipu Formation, Parnaíba Basin, Brazil)". Earth History and Biodiversity. 100017. doi:10.1016/j.hisbio.2025.100017.
  7. ^ Collado, G. A.; Galleguillos, F. F. (2025). "A new species of ?Diploctenium (Anthozoa: Meandrinidae) from the Trihueco Formation (Lower Paleocene), south-central Chile". Zootaxa. 5584 (2): 281–287. doi:10.11646/zootaxa.5584.2.8.
  8. ^ Pohler, S. M. L.; Hubmann, B.; Kammerhofer, M. (2025). "Favosites? herbigi, a new tabulate coral from the Lower Devonian 'Hunsrück Slates' and its biological curiosities". Zeitschrift der Deutschen Gesellschaft für Geowissenschaften. doi:10.1127/zdgg/2025/0467.
  9. ^ Domingos, R.; Callapez, P. M.; Legoinha, P. (2025). "A new species of Early Devonian Pleurodictyum Goldfuss, 1829 (Anthozoa, Tabulata) from the historical fossil site of Rates (NW Portugal): palaeoecological and palaeoenvironmental considerations". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2462952.
  10. ^ Hao, W.; Han, J.; Baliński, A.; Brugler, M. R.; Wang, D.; Wang, X.; Ruthensteiner, B.; Komiya, T.; Sun, J.; Yong, Y.; Song, X. (2025). "Unveiling the early evolution of black corals". Communications Biology. 8 (1). 579. doi:10.1038/s42003-025-08022-x.
  11. ^ Krutykh, A. A.; Mirantsev, G. V.; Rozhnov, S. V. (2025). "Sutherlandia gzheliensis sp. nov.—a New Species of Favositid Coral from the Gzhelian Stage of the Moscow Syneclise". Paleontological Journal. 58 (11): 1208–1215. doi:10.1134/S0031030124601075.
  12. ^ a b c d Peel, J. S. (2025). "Middle Cambrian (Wuliuan Stage) Small Shelly Fossils from North Greenland (Laurentia)". Bulletin of Geosciences. 100 (1): 1–56.
  13. ^ Vinn, O.; Madison, A. (2025). "Discovery of a phosphatic helical-looking microstructure in Sphenothallus (Cnidaria) from the Late Ordovician of Estonia: Implications for phosphatic biomineralization". Proceedings of the Geologists' Association. doi:10.1016/j.pgeola.2025.101096.
  14. ^ Ivantsov, A. Yu.; Zakrevskaya, M. A. (2025). "The last jellyfish of the Precambrian". Invertebrate Zoology. 22 (1): 56–67. doi:10.15298/invertzool.22.1.05.
  15. ^ a b c d e f g h i j k l m n o p q r s t Martha, S. O.; Sanner, J.; Cheetham, A. H.; Scholz, J. (2025). "The cheilostome bryozoan fauna of the Vincentown Limesand from the Thanetian of New Jersey and Delaware, USA: countdown to the Paleocene–Eocene Thermal Maximum (PETM)". Palaeontographica Abteilung A. doi:10.1127/pala/2025/0159.
  16. ^ Iturra, D.; López-Gappa, J.; Pérez, L. M. (2025). "The family Dysnoetoporidae (Bryozoa: Cheilostomatida) did not become extinct in the Late Cretaceous: a new genus from the Miocene of Patagonia (Argentina)". Journal of Paleontology: 1–8. doi:10.1017/jpa.2024.63.
  17. ^ Taboada, C. A.; Pagani, M. A.; Carrera, M. G. (2025). "Carboniferous (upper Serpukhovian–Bashkirian) fenestrate bryozoans from the Pampa de Tepuel Formation, central-western Patagonia, Argentina". Journal of Paleontology: 1–31. doi:10.1017/jpa.2024.74.
  18. ^ Castle-Jones, J.; Betts, M. J.; Jacquet, S. M.; Chen, F.; Zhang, Z.; Hall, P. A.; Klaebe, R. M.; Brock, G. A. (2025). "A new integrated lower Cambrian chronostratigraphy for the Normanville Group, eastern Stansbury Basin, with definition of the oldest small shelly fossil zones in South Australia". Australasian Palaeontological Memoirs. 57: 465–489.
  19. ^ Jansen, U. (2025). "A new species of Cyrtina from the upper Emsian (Brachiopoda, Lower Devonian) of the Rhenish Massif (Germany)". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-025-00646-5.
  20. ^ a b c Rezende, J. M. P.; Fonseca, V. M. M.; Gallo, V.; Ponciano, L. C. M. O. (2025). "Katzeria and Iridistrophia maecuruensis: New brachiopod taxa from the Middle Devonian of the Amazonas Basin, Pará state, North Brazil". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2484310.
  21. ^ Baranov, V. V.; Kebrie-ee Zade, M. R.; Blodgett, R. B. (2025). "New Late Devonian (Upper Famennian) Athyridids from the Khoshyeilagh Formation of Eastern Alborz Mountains, North-East Iran". Paleontological Journal. 58 (11): 1232–1241. doi:10.1134/S0031030124601105.
  22. ^ Surlyk, F. (2025). "Maastrichtian brachiopods from the chalk of Denmark". Bulletin of the Geological Society of Denmark. 74: 49–118. doi:10.37570/bgsd-2025-74-05.
  23. ^ Vörös, A.; Szives, O. (2025). "Role of oceanic anoxic events in regulating the Jurassic–Early Cretaceous taxonomic diversity of Mediterranean brachiopods". Palaeogeography, Palaeoclimatology, Palaeoecology. 112788. doi:10.1016/j.palaeo.2025.112788.
  24. ^ a b Paul, C. R. C. (2025). "Generic revision of holocystitid blastozoans". Acta Palaeontologica Polonica. 70 (1): 125–141. doi:10.4202/app.01212.2024.
  25. ^ a b c d e f g h i j Osborn, A. S.; Portell, R. W.; Mooi, R. (2025). "Paleogene Echinoids of Florida". Bulletin of the Florida Museum of Natural History. 61 (1): 1–314. doi:10.58782/flmnh.xqds7462.
  26. ^ a b Roux, M.; Thuy, B.; Gale, A. S. (2025). "Plio-Pleistocene deep-sea crinoid (Echinodermata) diversity from the western Rodrigues Ridge, Indian Ocean, revealed by microfossil evidence". Zootaxa. 5583 (3): 509–525. doi:10.11646/zootaxa.5583.3.5.
  27. ^ a b c d e f g h i j k l Bohatý, J.; Ausich, W. I.; Ebert, L. M. (2025). "Revision of "Myrtillocrinus" (Crinoidea, Eucladida) and related Devonian genera as an example of the importance of reassessing historical fossil collections vs. mere study of flawed literature". Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen. 313 (3): 303–326. doi:10.1127/njgpa/2025/1234.
  28. ^ Rozhnov, S. V. (2025). "Kukrusecrinus stellatus gen. et sp. nov.—the First Representative of the Family, Colpodecrinidae (Crinoidea, Camerata) in the Baltic Ordovician, Its Paleobiogeographic Significance and the Family Phylogenetic Position". Paleontological Journal. 58 (11): 1266–1280. doi:10.1134/S0031030124601129.
  29. ^ Borghi, E.; Garilli, V.; Morra, L. E.; Repetto, G.; Lozar, F.; Violanti, D. (2025). "The Miocene deep-water echinoids Toxopatagus italicus and Neoholaster albensis gen. and sp. nov., implications for holasteroid phylogeny and palaeoecology". Journal of Systematic Palaeontology. 23 (1). 2472851. doi:10.1080/14772019.2025.2472851.
  30. ^ Thuy, B.; Numberger-Thuy, L. D.; Gale, A. S. (2025). "A Jurassic relict of the Triassic stem euryalid brittle star Aspiduriella (Echinodermata, Ophiuroidea)". Zootaxa. 5620 (3): 470–476. doi:10.11646/zootaxa.5620.3.6.
  31. ^ Zamora, S.; Guensburg, T. E.; Sprinkle, J. (2025). "Redescription of the Cambrian edrioasteroid Sprinkleoglobus spencensis n. comb. (Wen et al., 2019) from the Spence Shale (Utah, USA)". Journal of Paleontology: 1–7. doi:10.1017/jpa.2024.44.
  32. ^ Guenser, P.; El Hariri, K.; Jalil, N.-E.; Lefebvre, B. (2025). "Historical bias in palaeontological collections: Stylophora (Echinodermata) as a case study". Swiss Journal of Palaeontology. 144. 6. doi:10.1186/s13358-024-00345-2.
  33. ^ Salamon, M. A.; Kapitany, T.; Płachno, B. J. (2025). "First report of a nearly complete comatulid crinoid (Comatulida, Echinodermata) from the Cretaceous of Australia". Scientific Reports. 15. 8610. doi:10.1038/s41598-025-90111-2. PMC 11903946.
  34. ^ Dean, C. D.; Thompson, J. R. (2025). "Museum 'dark data' show variable impacts on deep-time biogeographic and evolutionary history". Proceedings of the Royal Society B: Biological Sciences. 292 (2041). 20242481. doi:10.1098/rspb.2024.2481. PMC 11858742. PMID 39999885.
  35. ^ Saulsbury, J. G.; Parins-Fukuchi, C. T.; Wilson, C. J.; Reitan, T.; Liow, L. H. (2023). "Age-dependent extinction and the neutral theory of biodiversity". Proceedings of the National Academy of Sciences of the United States of America. 121 (1): e2307629121. doi:10.1073/pnas.2307629121. PMC 10769858. PMID 38150497.
  36. ^ Johnson, E. C. (2025). "Curve-fitting alone cannot validate neutral theory". Proceedings of the National Academy of Sciences of the United States of America. 122 (10): e2412160122. doi:10.1073/pnas.2412160122. PMC 11912361. PMID 40030020.
  37. ^ Saulsbury, J. G.; Parins-Fukuchi, C. T.; Wilson, C. J.; Reitan, T.; Liow, L. H. (2025). "Reply to Johnson: Holistic evaluation of ecological models in paleobiology". Proceedings of the National Academy of Sciences of the United States of America. 122 (10): e2415303122. doi:10.1073/pnas.2415303122. PMC 11912387. PMID 40030032.
  38. ^ Gao, S.; Tan, J.; Wang, W. (2025). "Double-helical macrostructure aids the passive movement of extinctive graptolites (Dicellograptus) revealed by CFD simulation". Swiss Journal of Palaeontology. 144. 13. doi:10.1186/s13358-025-00356-7.
  39. ^ Frýda, J.; Frýdová, B. (2025). "High-resolution records of the mid-Homerian (Silurian) marine chemistry evolution and graptolite biodiversity across the Lundgreni Event reveal what nearly killed the graptolites". Palaeogeography, Palaeoclimatology, Palaeoecology. 112866. doi:10.1016/j.palaeo.2025.112866.
  40. ^ Tolmacheva, T. Yu.; Dronov, A. V.; Lykov, N. A. (2025). "Multielement Conodonts from the Upper Ordovician of the Siberian Platform". Paleontological Journal. 58 (11): 1242–1265. doi:10.1134/S0031030124601117.
  41. ^ a b Orchard, M. J.; Friedman, R. M.; Mihalynuk, M. G. (2025). "Conodonts identify the lower–middle Norian boundary in association with ∼224 Ma U-Pb dates from the Nicola Group, southern British Columbia, Canada". Journal of the Geological Society. doi:10.1144/jgs2024-299.
  42. ^ Li, Y.; Ji, Z.; Wu, G.; Wignall, P. B.; Chen, Y.; Zhang, Z.; Zhang, S.; Lai, X. (2025). "Early to late Triassic conodont biostratigraphy in the Lhasa Terrane". Palaeogeography, Palaeoclimatology, Palaeoecology. 112927. doi:10.1016/j.palaeo.2025.112927.
  43. ^ a b c Leu, M.; Brosse, M.; Baud, A.; Bhat, G.; Vennemann, T.; Bucher, H.; Goudemand, N. (2025). "Conodont diversity, biostratigraphy, and environmental dynamics: Unravelling the Smithian-Spathian transition at Guryul Ravine, Kashmir". Gondwana Research. doi:10.1016/j.gr.2025.02.028.
  44. ^ a b Zhen, Y. Y.; Percival, I. G.; Smith, P. M.; Webby, B. D. (2025). "Latest Cambrian–earliest Ordovician conodonts from far western New South Wales and their biostratigraphical significance". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2025.2463062.
  45. ^ Nesme, F.; Girard, C.; Corradini, C.; Renaud, S. (2025). "Convergent allometric trajectories in Devonian– Carboniferous unornamented Polygnathus conodonts". Acta Palaeontologica Polonica. 70 (1): 25–41. doi:10.4202/app.01198.2024.
  46. ^ Wang, W.; Hu, K.; Wang, X. (2025). "Temporal and spatial evolution of Mississippian conodont: A case study". Palaeogeography, Palaeoclimatology, Palaeoecology. 661. 112701. doi:10.1016/j.palaeo.2024.112701.
  47. ^ Muzzopappa, P.; Bargo, M. S.; Vizcaíno, S. F. (2025). "Anurans from the Early–Middle Miocene Santa Cruz Formation at Río Chalía (Patagonia, Argentina), and a revision of the fossil Calyptocephalellidae (Anura: Australobatrachia)". Journal of Systematic Palaeontology. 23 (1). 2456622. doi:10.1080/14772019.2025.2456622.
  48. ^ Strong, C. R. C; Bishop, P. J.; Hutchinson, J. R.; Pierce, S. E. (2025). "Digital volumetric modeling reveals unique body plan experimentation in the Devonian tetrapod Ichthyostega". iScience. 112486. doi:10.1016/j.isci.2025.112486.
  49. ^ Garza, H. K.; Catlos, E. J.; Lapen, T. J.; Clarke, J. A.; Brookfield, M. E. (2025). "New U-Pb constraints and geochemistry of the East Kirkton Quarry, Scotland: Implications for early tetrapod evolution in the Carboniferous". PLOS ONE. 20 (4). e0321714. doi:10.1371/journal.pone.0321714.
  50. ^ Adams, G. R.; Otoo, B. K. A.; Bohus, C. P. W.; Micucci, L. M.; Maddin, H. C. (2025). "Anatomy and revised diagnosis of the embolomere Calligenethlon watsoni from Joggins, Nova Scotia, based on micro-computed tomography". Zoological Journal of the Linnean Society. 203 (2). zlae178. doi:10.1093/zoolinnean/zlae178.
  51. ^ Mehmood, A.; Singh, S. A.; Elsler, A.; Benton, M. J. (2025). "The ecology and geography of temnospondyl recovery after the Permian–Triassic mass extinction". Royal Society Open Science. 12 (3). 241200. doi:10.1098/rsos.241200. PMC 11879622. PMID 40046664.
  52. ^ Morkovin, B. I. (2025). "Structural Features of the Muscular Crests of the Parasphenoid in Early Triassic Capitosauromorphs (Amphibia: Capitosauromorpha) of the East European Platform as a Reflection of Adaptive Differences". Paleontological Journal. 58 (11): 1291–1300. doi:10.1134/S0031030124601130.
  53. ^ Kufner, A. M.; Deckman, M. E.; Miller, H. R.; So, C.; Price, B. R.; Lovelace, D. M. (2025). "A new metoposaurid (Temnospondyli) bonebed from the lower Popo Agie Formation (Carnian, Triassic) and an assessment of skeletal sorting". PLOS ONE. 20 (4). e0317325. doi:10.1371/journal.pone.0317325. PMC 11964259.
  54. ^ Kalita, S.; Teschner, E. M.; Konietzko-Meier, D. (2025). "Illuminating the dark mess of fibers: Application of circular cross polarized light in unravelling the bone tissue structure of the dermal pectoral girdle of Metoposaurus krasiejowensis". Journal of Anatomy. doi:10.1111/joa.14197. PMID 39823289.
  55. ^ Skutschas, P. P.; Kolchanov, V. V.; Syromyatnikova, E. V. (2025). "Pedicellate Teeth in Archaic Salamanders (Lissamphibia, Caudata)". Doklady Biological Sciences. doi:10.1134/S0012496624600532. PMID 39899238.
  56. ^ Báez, A. M.; Nicoli, L. (2025). "Re-examination of the oldest known frog from South America: New data prompt new evolutionary interpretations". The Anatomical Record. doi:10.1002/ar.25654.
  57. ^ Lemierre, A.; Bailon, S.; Folie, A.; Laurin, M. (2025). "New pipimorphs from the Late Cretaceous of Niger". Annales de Paléontologie. 111 (2). 102751. doi:10.1016/j.annpal.2024.102751.
  58. ^ Jenkins, X. A.; Sues, H.-D.; Webb, S.; Schepis, Z.; Peecook, B. R.; Mann, A. (2025). "The recumbirostran Hapsidopareion lepton from the early Permian (Cisuralian: Artinskian) of Oklahoma reassessed using HRμCT, and the placement of Recumbirostra on the amniote stem". Papers in Palaeontology. 11 (1). e1610. doi:10.1002/spp2.1610.
  59. ^ Li, R.; D'Alba, L.; Debruyn, G.; Dobson, J. L.; Zhou, C.-F.; Clarke, J. A.; Vinther, J.; Li, Q.; Shawkey, M. D. (2025). "Mesozoic mammaliaforms illuminate the origins of pelage coloration". Science. 387 (6739): 1193–1198. doi:10.1126/science.ads9734.
  60. ^ Liu, J.; Xu, X.; Clark, J. M.; Bi, S. (2025). "Bienotheroides wucaiensis sp. nov., a new tritylodontid (Cynodontia, Mammaliamorpha) from the Late Jurassic Shishugou Formation of Xinjiang, China". The Anatomical Record. doi:10.1002/ar.25631. PMID 39905961.
  61. ^ Olroyd, S. L.; Kopperud, B. T. (2025). "Allometry of sound reception structures and evidence for a mandibular middle ear in non-mammalian synapsids". Evolution. doi:10.1093/evolut/qpaf041. PMID 39989013.
  62. ^ Laurin, M.; Didier, G. (2025). "The rise and fall of Varanopidae† (Amniota, Synapsida)". Frontiers in Earth Science. 13. 1544451. doi:10.3389/feart.2025.1544451.
  63. ^ Nieke, S.; Fröbisch, J.; Canoville, A. (2025). "Bone microstructure of the basal anomodont Suminia getmanovi supports its arboreal lifestyle". Scientific Reports. 15. 10294. doi:10.1038/s41598-025-92727-w. PMC 11937274.
  64. ^ Macungo, Z.; Benoit, J.; Araújo, R. (2025). "Inostrancevia africana, the first diagnosable gorgonopsian (Therapsida, Synapsida) from the Metangula graben (Mozambique): new anatomical observations and biostratigraphic implications". Swiss Journal of Palaeontology. 144. 12. doi:10.1186/s13358-025-00348-7.
  65. ^ Kerber, L.; Michelotti, I. M.; Martins, J. H. A.; Müller, R. T. (2025). "New postcranial remains of a non-mammaliaform cynodont from the Pinheiros-Chiniquá Sequence (Middle-Upper Triassic) of Brazil". Journal of South American Earth Sciences. 105487. doi:10.1016/j.jsames.2025.105487.
  66. ^ Kulik, Z. T. (2025). "Disparate life histories in coeval Triassic cynodonts and their implications for the evolution of mammalian life histories". Paleobiology: 1–19. doi:10.1017/pab.2024.58.
  67. ^ Medina, T. G. M.; Martinelli, A. G.; Gaetano, L. C.; Roese-Miron, L.; Tartaglione, A.; Backs, A.; Novas, F. E.; Kerber, L. (2025). "Revisiting the neuroanatomy of Massetognathus pascuali (Eucynodontia: Cynognathia) from the early Late Triassic of South America using Neutron Tomography". The Science of Nature. 112 (1). 7. doi:10.1007/s00114-024-01955-z. PMID 39821074.
  68. ^ Roese-Miron, L.; Kerber, L. (2025). "Ontogeny of a Brazilian Late Triassic Traversodontid (Cynodontia, Cynognathia): Anatomical and Paleoecological Implications". Journal of Morphology. 286 (4). e70047. doi:10.1002/jmor.70047. PMID 40249030.
  69. ^ Kerber, L.; Montoya-Sanhueza, G.; Roese-Miron, L.; Damke, L. V. S.; Rezende, L.; Soares, M. B.; Müller, R. T.; Pretto, F. A. (2025). "New insights into the postcranial anatomy of Exaeretodon riograndensis (Eucynodontia: Traversodontidae): phylogenetic implications, body mass, and lifestyle". Journal of Mammalian Evolution. 32 (1). 2. doi:10.1007/s10914-024-09741-4.
  70. ^ Kerber, L.; Müller, R. T.; Simão-Oliveira, D.; Pretto, F. A.; Martinelli, A. G.; Michelotti, I. M.; Benoit, J.; Fonseca, P. H.; David, R.; Fernandez, V.; Angielczyk, K. D.; Araújo, R. (2025). "Synchrotron X-ray micro-computed tomography enhances our knowledge of the skull anatomy of a Late Triassic ecteniniid cynodont with hypercanines". The Anatomical Record. doi:10.1002/ar.25616. PMID 39801379.
  71. ^ Dotto, P. H.; Roese-Miron, L.; Cabreira, S. F.; Roberto-da-Silva, L.; Pretto, F. A.; Kerber, L. (2025). "Mandibular anatomy of a new specimen of a prozostrodontian cynodont (Eucynodontia: Probainognathia) from the Upper Triassic of Brazil". The Science of Nature. 112 (1). 6. doi:10.1007/s00114-024-01953-1. PMID 39808199.
  72. ^ Liu, L.; Ren, J.-C.; Mao, F.-Y. (2025). "Reinvestigation of Yuanotherium minor and its implications for the cuspal homology and maxillary-palatal evolution of tritylodontids". Vertebrata PalAsiatica. doi:10.19615/j.cnki.2096-9899.250331.
  73. ^ Hai, L.; Wang, Y.; Wang, H.; Gao, Y.; Zhu, Z.; You, H.; Wang, Y. (2025). "A juvenile specimen of Sinoconodon rigneyi with new information on pattern of tooth replacement". Journal of Vertebrate Paleontology. e2442473. doi:10.1080/02724634.2024.2442473.
  74. ^ Tumelty, M.; Lautenschlager, S. (2025). "Is cranial anatomy indicative of fossoriality? A case study of the mammaliaform Hadrocodium wui". The Anatomical Record. doi:10.1002/ar.25630. PMID 39853864.
  75. ^ a b c d Botting, J. P.; Janussen, D.; Dohrmann, M.; Muir, L. A.; Zhang, Y.; Ma, J. (2025). "Advanced crown-group Rossellidae (Porifera: Hexactinellida) resembling extant taxa from the Hirnantian (Late Ordovician) Anji Biota". Papers in Palaeontology. 11 (1). e70000. doi:10.1002/spp2.70000.
  76. ^ Pasinetti, G.; Fitzgerald, H. G.; Pérez-Pinedo, D.; McIlroy, D. (2025). "A new species of Charnia from the Ediacaran of Newfoundland reveals novel insights on the taxonomy, palaeobiology and palaeoecology of the Charnida (Rangeomorpha)". Journal of Systematic Palaeontology. 23 (1). 2468193. doi:10.1080/14772019.2025.2468193.
  77. ^ Vinn, O.; Isakar, M.; El Hedeny, M.; Almansour, M. I.; Alfarraj, S. (2025). "First record of agglutinated worm tubes from the uppermost Cambrian of Estonia". Acta Geologica Polonica. 75 (2). e41. doi:10.24425/agp.2024.152663.
  78. ^ Świerczewska-Gładysz, E.; Jurkowska, A. (2025). "Late Cretaceous (Campanian) rhizomorine sponges (lithistid Demospongiae) from the Miechów and Mogilno-Łódź Synclinoria (southern and central Poland)". Annales Societatis Geologorum Poloniae. 94 (4): 345–398. doi:10.14241/asgp.2024.18.
  79. ^ Valent, M.; Fatka, O.; Budil, P. (2025). "New Ordovician hyolith Elegantilites custos sp. n. and the palaeogeographic and stratigraphic distribution of the genus Elegantilites Marek, 1966". PalZ. doi:10.1007/s12542-024-00708-7.
  80. ^ Peel, J. S. (2025). "Extending the diversity of grasping spines in middle Cambrian stem-group Chaetognathifera". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2025.2455702.
  81. ^ Luo, C.; Parry, L. A.; Boudinot, B. E.; Wang, S.; Jarzembowski, E. A.; Zhang, H.; Wang, B. (2025). "A Jurassic acanthocephalan illuminates the origin of thorny-headed worms". Nature: 1–7. doi:10.1038/s41586-025-08830-5.
  82. ^ Wang, Y.; Steiner, M.; Wang, P.; Yang, X.; Yang, R. (2025). "New Miaolingian tubicolous fossils from North China and the persistence of the Ediacaran "worm-world"". Palaeogeography, Palaeoclimatology, Palaeoecology. 112959. doi:10.1016/j.palaeo.2025.112959.
  83. ^ Jeon, J.; Simonet Roda, M.; Chen, Z.-Y.; Luo, C.; Kershaw, S.; Kim, D.; Ma, J.-Y.; Lee, J.-H.; Zhang, Y.-D. (2025). "Phosphatic stromatoporoid sponges formed reefs ~480 Mya". Proceedings of the National Academy of Sciences of the United States of America. 122 (15). e2426105122. doi:10.1073/pnas.2426105122. PMID 40163761.
  84. ^ Carrera, M. G.; Botting, J. P.; Cañas, F. L. (2025). "Heteractinid, hexactinellid and sphaeroclonid sponges as rare components of anthaspidellid-dominated reefs from the Ordovician of the Precordillera, western Argentina". Palaeontologia Electronica. 28 (1). 28.1.a17. doi:10.26879/1351.
  85. ^ a b Wang, Q.; Dai, Q.; Vayda, P.; Luo, J.; Shao, T.; Liu, Y.; Hua, H.; Xiao, S. (2025). "Fortunian archaeocyath sponges acquired biomineralization in the beginning of the Cambrian explosion". Geology. doi:10.1130/G53249.1.
  86. ^ Mussini, G.; Butterfield, N. J. (2025). "Exotic cuticular specializations in a Cambrian scalidophoran". Proceedings of the Royal Society B: Biological Sciences. 292 (2040). 20242806. doi:10.1098/rspb.2024.2806. PMC 11793982. PMID 39904395.
  87. ^ Ivantsov, A.; Knoll, A. H.; Zakrevskaya, M.; Fedonkin, M.; Pauly, D. (2025). "Growth of the enigmatic Ediacaran Parvancorina minchami". Paleobiology: 1–8. doi:10.1017/pab.2024.55.
  88. ^ Zhao, M.; Zhang, Y.; Tang, F.; Li, Y.; Li, M.; Zhong, L.; Ren, L. (2025). "Enigmatic discoidal macrofossils with central ring from the Ediacaran Jiangchuan biota, Southwest China". Papers in Palaeontology. 11 (2). e70005. doi:10.1002/spp2.70005.
  89. ^ Dunn, F. S.; Donoghue, P. C. J.; Liu, A. G. (2025). "Morphogenesis of Fractofusus andersoni and the nature of early animal development". Nature Communications. 16 (1). 3439. doi:10.1038/s41467-025-58605-9.
  90. ^ Wu, C.; Liu, A. G.; Lio, Y.; Wang, X.; Li, G.; Qu, H.; Huang, R.; Qiu, M.; Zheng, W.; Sun, Y.; Shi, H.; Ouyang, Q.; Wan, B.; Chen, Z.; Zhou, C.; Yuan, X.; Pang, K. (2025). "The Quanjishan Charnia assemblage from the northern Qaidam Basin, Tibetan Plateau, and implications for palaeoecology and taphonomy of Ediacaran fronds". Palaeogeography, Palaeoclimatology, Palaeoecology. 112816. doi:10.1016/j.palaeo.2025.112816.
  91. ^ Stock, C. W.; May, A.; Ebert, J. R.; Scotese, C. R.; Hagadorn, J. W. (2025). "Early Devonian (Pragian) decrease in global generic diversity of stromatoporoids, and their extreme decrease in paleogeographic distribution in North America". Palaeogeography, Palaeoclimatology, Palaeoecology. 112719. doi:10.1016/j.palaeo.2025.112719.
  92. ^ Wang, D.; Vannier, J.; Martín-Durán, J. M.; Herranz, M.; Yu, C. (2025). "Preservation and early evolution of scalidophoran ventral nerve cord". Science Advances. 11 (2). eadr0896. doi:10.1126/sciadv.adr0896. PMC 11721716. PMID 39792685.
  93. ^ Slater, B. J. (2025). "Cambrian carbonaceous protoconodonts and the early fossil record of the Chaetognatha". Proceedings of the Royal Society B: Biological Sciences. 292 (2041). 20242386. doi:10.1098/rspb.2024.2386. PMC 11836706. PMID 39968616.
  94. ^ Jamison-Todd, S.; Witts, J. D.; Jones, M. E. H.; Tangunan, D.; Chandler, K.; Bown, P.; Twitchett, R. J. (2025). "The evolution of bone-eating worm diversity in the Upper Cretaceous Chalk Group of the United Kingdom". PLOS ONE. 20 (4). e0320945. doi:10.1371/journal.pone.0320945. PMC 11967938.
  95. ^ Bicknell, R. D. C.; Campione, N. E.; Brock, G. A.; Paterson, J. R. (2025). "Adaptive responses in Cambrian predator and prey highlight the arms race during the rise of animals". Current Biology. doi:10.1016/j.cub.2024.12.007. PMID 39755119.
  96. ^ Vinn, O.; Hambardzumyan, T.; Wilson, M. A.; Serobyan, V. (2025). "Palaeobiological and phylogenetic implications of preserved muscle scars in Devonian tentaculitids from Armenia". Historical Biology: An International Journal of Paleobiology. doi:10.1080/08912963.2025.2458115.
  97. ^ Opitek, K.; Zatoń, M.; Hu, M.; Schiffbauer, J. D.; Selly, T.; Myrow, P. (2025). "Morphology and mode of life of a peculiar Devonian microconchid tubeworm Aculeiconchus from Wyoming, USA". Lethaia. 57 (4): 1–13. doi:10.18261/let.57.4.8.
  98. ^ Ma, S.; Kimmig, J.; Schiffbauer, J. D.; Li, R.; Peng, S.; Yang, X. (2025). "Deep water vetulicolians from the lower Cambrian of China". PeerJ. 13. e18864. doi:10.7717/peerj.18864. PMC 11760202.
  99. ^ Ismail, A. A.; Boukhary, M.; Sharabi, S. A.; Kotb, O. A. (2025). "The new genus Bolivilongella (Family Bolivinoididae) from the Miocene of the Mango-2 well, Mediterranean Sea, Egypt". Micropaleontology. 71 (2): 191–196. doi:10.47894/mpal.71.2.05.
  100. ^ Jalloh, C. M.; Hikmahtiar, S.; Korin, A.; Prayudi, S. D.; Fheed, A.; Kaminsky, M. A. (2025). "Bulbobaculites attashensis sp. nov., a new agglutinated foraminifera from the Middle Jurassic D7 Attash Member of the Dhruma Formation, Central Saudi Arabia". Annales Societatis Geologorum Poloniae. 94 (4): 399–408. doi:10.14241/asgp.2024.16.
  101. ^ a b c d e f g h i j k Altıner, D.; Payne, J. L.; Lehrmann, D. J.; Atasoy, S. G.; Özkan-Altıner, S. (2025). "New foraminifera from the Changhsingian (Upper Permian) of the Taurides (southern Turkey) with remarks on their evolutionary origins". Journal of Paleontology: 1–28. doi:10.1017/jpa.2024.21.
  102. ^ a b c d Ghanbarloo, H.; Safari, A.; Görmüş, M. (2025). "New species of larger benthic foraminifera from the Maastrichtian deposits of the southern margin of the Neotethys (Zagros Foreland Basin)". Journal of Palaeogeography. doi:10.1016/j.jop.2024.10.003.
  103. ^ Kaminski, M. A.; Korin, A. (2025). "Flabellogaudryina n.gen, a new agglutinated foraminiferal genus from the Eocene of Saudi Arabia". Micropaleontology. 71 (1): 93–100. doi:10.47894/mpal.71.1.04.
  104. ^ Okuyucu, C.; Boncheva, I.; Sachanski, V.; Saydam-Demiray, D. G.; Göncüoğlu, M. C. (2025). "Development of the Middle Devonian-Mississippian carbonate platform in Zonguldak Terrane (NW Anatolia, Türkiye) with special emphasis on the Devonian-Carboniferous Boundary". Palaeobiodiversity and Palaeoenvironments. doi:10.1007/s12549-025-00650-9.
  105. ^ Faulkner, K.; Lowery, C.; Martindale, R. C.; Simpson, C.; Fraass, A. J. (2025). "Record of Foraminifera test composition throughout the Phanerozoic". Proceedings of the Royal Society B: Biological Sciences. 292 (2044). 20250221. doi:10.1098/rspb.2025.0221. PMID 40202068.
  106. ^ Li, Z.; Yang, X.; Dal Corso, J.; Wang, F.; Jia, E.; Dai, X.; Yuan, Z.; Chen, X.; Lai, J.; Li, X.; Liu, X.; Jiang, S.; Wang, B.; Wu, K.; Chu, D.; Song, H.; Tian, L.; Song, H. (2025). "No extinction in foraminifera during the Carnian Pluvial Episode (Late Triassic)". Global and Planetary Change. 104817. doi:10.1016/j.gloplacha.2025.104817.
  107. ^ Sigismondi, S.; Luciani, V.; Alegret, L.; Westerhold, T. (2025). "Evaluating planktic foraminiferal resilience during the Middle Eocene Climatic Optimum (MECO) in the Atlantic Ocean". Palaeogeography, Palaeoclimatology, Palaeoecology. 112867. doi:10.1016/j.palaeo.2025.112867.
  108. ^ Koorapati, R. K.; Moon, B. C.; Cotton, L. J. (2025). "Morphological trends in reticulate Nummulites across the Eocene–Oligocene transition". Palaeontology. 68 (2). e70003. doi:10.1111/pala.70003.
  109. ^ a b c d e f g h i j k l Ghavidel-Syooki, M. (2025). "The biostratigraphy and palaeogeography of acritarchs, chitinozoans, and cryptospores from the Upper Ordovician Ghelli Formation, Khoshyeilagh region, southern Caspian Sea, Alborz Mountains, northern Iran". Palynology. doi:10.1080/01916122.2025.2475253.
  110. ^ a b c Ouyang, Q.; Zhou, C.; Xiao, S.; Wu, C.; Chen, Z.; Lang, X.; Shi, H.; Sun, Y. (2025). "Silicified microfossils from the Ediacaran Doushantuo Formation along a shelf margin-slope-basin transect in Hunan Province, South China, with stratigraphical implications". Journal of Paleontology. 98 (Supplement S95): 1–79. doi:10.1017/jpa.2023.92.
  111. ^ Zhao, Mingsheng; Zhang, Yupeng; Tang, Feng; Li, Yulan; Li, Ming; Zhong, Ling; Ren, Liudong (2025). "Enigmatic discoidal macrofossils with central ring from the Ediacaran Jiangchuan biota, Southwest China". Papers in Palaeontology. 11 (2): e70005. doi:10.1002/spp2.70005. ISSN 2056-2802.
  112. ^ Wu, X.-J.; Song, J.-Q.; Luo, J.; Liu, Y.; Aitchison, J. C.; Wang, Y.-J.; Yan, K.; Chen, Z.-Y.; Chen, D.; Zhang, Y.-D. (2025). "Darriwilian radiolarians from slope facies sediments, Ordos Basin, North China and their paleoecological and paleogeographical implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 112818. doi:10.1016/j.palaeo.2025.112818.
  113. ^ Porter, S. M.; Riedman, L. A.; Woltz, C. R.; Gold, D. A.; Kellogg, J. B. (2025). "Early eukaryote diversity: a review and a reinterpretation". Paleobiology: 1–18. doi:10.1017/pab.2024.33.
  114. ^ Saint Martin, J.-P.; Charbonnier, S.; Saint Martin, S.; Cazes, L.; André, J.-P. (2025). "New records of Palaeopaschichnus Palij, 1976 from the Ediacaran of Romania". Geodiversitas. 47 (1): 1–16. doi:10.5252/geodiversitas2025v47a1.
  115. ^ Mills, D. B.; Vuillemin, A.; Muschler, K.; Coskun, Ö. K.; Orsi, W. D. (2025). "The Rise of Algae promoted eukaryote predation in the Neoproterozoic benthos". Science Advances. 11 (8). eadt2147. doi:10.1126/sciadv.adt2147. PMC 11838005. PMID 39970204.
  116. ^ Mitchell, E. G.; Stephenson, N. P.; Buma-at, P. A.; Roberts, L.; Dennis, S.; Kenchington, C. G. (2025). "Variation of population and community ecology over large spatial scales in Ediacaran early animal communities". Global and Planetary Change. doi:10.1016/j.gloplacha.2025.104818.
  117. ^ Hammarlund, E. U.; Bukkuri, A.; Norling, M. D.; Islam, M.; Posth, N. R.; Baratchart, E.; Carroll, C.; Amend, S. R.; Gatenby, R. A.; Pienta, K. J.; Brown, J. S.; Peters, S. E.; Hancke, K. (2025). "Benthic diel oxygen variability and stress as potential drivers for animal diversification in the Neoproterozoic-Palaeozoic". Nature Communications. 16 (1). 2223. doi:10.1038/s41467-025-57345-0. PMC 11928486.
  118. ^ Mitchell, E. G.; Pates, S. (2025). "From organisms to biodiversity: the ecology of the Ediacaran/Cambrian transition". Paleobiology: 1–24. doi:10.1017/pab.2024.21.
  119. ^ Luo, C.; Zhu, M. (2025). "Chert Lagerstätten as a new window to the biological revolution across the Ediacaran−Cambrian boundary". Geology. doi:10.1130/G52956.1.
  120. ^ Reijenga, B. R.; Close, R. A. (2025). "Apparent timescaling of fossil diversification rates is caused by sampling bias". Current Biology. 35 (4): 905–910.e3. doi:10.1016/j.cub.2024.12.038. PMID 39855206.
  121. ^ Vinn, O.; Zapalski, M. K.; Wilson, M. A. (2025). "Evolutionary paleoecology of macroscopic symbiotic endobionts in Phanerozoic corals". Earth-Science Reviews. 263. 105071. doi:10.1016/j.earscirev.2025.105071.
  122. ^ Maletz, J.; Zhu, X.-J.; Zhang, Y.-D.; Gutiérrez-Marco, J. C. (2025). "The identification of 'feather-like' fossils in the Palaeozoic: Algae, hydroids, or graptolites?". Palaeoworld. doi:10.1016/j.palwor.2025.200909.
  123. ^ Pruss, S. B.; Smith, E. F.; Zhuravlev, A. Yu.; Nolan, R. Z.; McGann, T. C. (2025). "Rise and fall of archaeocyath reefs shaped early Cambrian skeletal animal abundance". Palaeogeography, Palaeoclimatology, Palaeoecology. 112852. doi:10.1016/j.palaeo.2025.112852.
  124. ^ Peel, J. S. (2025). "Fauna of the Sæterdal Formation (Cambrian Series 2, Stage 4) of North Greenland (Laurentia)". Bulletin of the Geological Society of Denmark. 74: 1–13. doi:10.37570/bgsd-2025-74-01.
  125. ^ Mussini, G.; Butterfield, N. J. (2025). "A microscopic Burgess Shale: small carbonaceous fossils from a deeper water biota and the distribution of Cambrian non-mineralized faunas". Proceedings of the Royal Society B: Biological Sciences. 292 (2041). 20242948. doi:10.1098/rspb.2024.2948. PMC 11836709. PMID 39968618.
  126. ^ Mussini, G.; Veenma, Y. P.; Butterfield, N. J. (2025). "A peritidal Burgess-Shale-type fauna from the middle Cambrian of western Canada". Palaeontology. 68 (1). e70001. doi:10.1111/pala.70001.
  127. ^ Vinn, O.; Liang, K.; Isakar, M.; Alkahtane, A. A.; Al Farraj, S.; El Hedeny, M. (2025). "The evolutionary innovation of coral colonization on motile gastropod shells arose shortly after the Great Ordovician Biodiversification Event in Baltica". PALAIOS. 40 (2): 62–69. doi:10.2110/palo.2024.010.
  128. ^ Buatois, L. A.; Mángano, M. G.; Paz, M.; Minter, N. J.; Zhou, K. (2025). "Early colonization of the deep-sea bottom—The protracted build-up of an ecosystem". Proceedings of the National Academy of Sciences of the United States of America. 122 (8). e2414752122. doi:10.1073/pnas.2414752122. PMC 11874251. PMID 39928853.
  129. ^ Vinn, O.; Almansour, M. I.; Al Farraj, S.; El Hedeny, M. (2025). "Symbiotic endobionts in tabulate corals from the Late Ordovician and Silurian of Estonia". GFF. doi:10.1080/11035897.2024.2391283.
  130. ^ Zong, R.; Liu, Y.; Liu, Q.; Ma, J.; Liu, S. (2025). "A new exceptionally preserved fauna from a lowest Silurian black shale: Insights into the recovery of deep-water ecosystems after the Late Ordovician mass extinction". Geology. doi:10.1130/G53042.1.
  131. ^ Zapalski, M. K.; Berkowski, B.; Skompski, S.; Pickett, J. W.; Young, G. C. (2025). "Ancient depths: Unprecedented completeness of mesophotic fish-coral ecosystem from the Devonian of Eastern Gondwana". Gondwana Research. doi:10.1016/j.gr.2025.03.006.
  132. ^ Berks, H. O.; Milla Carmona, P. S.; Donoghue, P. C. J.; Rayfield, E. J. (2025). "The evolution of herbivory, not terrestrialisation, drove morphological change in the mandibles of Palaeozoic tetrapods". Evolutionary Journal of the Linnean Society. doi:10.1093/evolinnean/kzaf004.
  133. ^ Wang, Y.; Hu, K.; Ye, X.; Wang, X. (2025). "The Middle–Late Pennsylvanian event: Timing and mechanisms". Palaeogeography, Palaeoclimatology, Palaeoecology. 667. 112893. doi:10.1016/j.palaeo.2025.112893.
  134. ^ Sadlok, G. (2025). "Tetrapod origins of small burrows from the Permian of Southwest Poland?". Lethaia. 58 (1): 1–15. doi:10.18261/let.58.1.5.
  135. ^ Guo, W.; Tian, L.; Chu, D.; Shu, W.; Benton, M. J.; Liu, J.; Tong, J. (2025). "Rapid riparian ecosystem recovery in low-latitudinal North China following the end-Permian mass extinction". eLife. doi:10.7554/eLife.104205.
  136. ^ Mujal, E.; Sues, H.-D.; Moreno, R.; Schaeffer, J.; Sobral, G.; Chakravorti, S.; Spiekman, S. N. F.; Schoch, R. R. (2025). "Triassic terrestrial tetrapod faunas of the Central European Basin, their stratigraphical distribution, and their palaeoenvironments". Earth-Science Reviews. 105085. doi:10.1016/j.earscirev.2025.105085.
  137. ^ Riccetto, M.; Mujal, E.; Bolet, A.; De Jaime-Soguero, C.; De Esteban-Trivigno, S.; Fortuny, J. (2025). "Tooth morphotypes shed light on the paleobiodiversity of Middle Triassic terrestrial vertebrate ecosystems from NE Iberian Peninsula (southwestern Europe)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 39–62. doi:10.54103/2039-4942/22340.
  138. ^ Godbold, A.; James, C. C.; Kiessling, W.; Hohmann, N.; Jarochowska, E.; Corsetti, F. A.; Bottjer, D. J. (2025). "Ancient frameworks as modern templates: exploring reef rubble consolidation in an ancient reef system". Proceedings of the Royal Society B: Biological Sciences. 292 (2040). 20242123. doi:10.1098/rspb.2024.2123. PMC 11793968. PMID 39904386.
  139. ^ Jésus, V. J. P.; Mateus, O.; Milàn, J.; Clemmensen, L. B. (2025). "Late Triassic small and medium-sized vertebrates from the Fleming Fjord Group of the Jameson Land Basin, central East Greenland". Palaeontologia Electronica. 28 (1). 28.1.a18. doi:10.26879/1423.
  140. ^ Stone, T.; Martindale, R.; Bodin, S.; Lathuilière, B.; Krencker, F.-N.; Fonville, T.; Kabiri, L. (2025). "Ecological Differences in Upper Pliensbachian (Early Jurassic) Reef Communities Determined by Environmental Conditions in Carbonate Settings". Journal of African Earth Sciences. 105547. doi:10.1016/j.jafrearsci.2025.105547.
  141. ^ Reddin, C. J.; Landwehrs, J. P.; Mathes, G. H.; Ullmann, C. V.; Feulner, G.; Aberhan, M. (2025). "Marine species and assemblage change foreshadowed by their thermal bias over Early Jurassic warming". Nature Communications. 16 (1). 1370. doi:10.1038/s41467-025-56589-0. PMC 11799210. PMID 39910097.
  142. ^ Petrizzo, M. R.; Parente, M.; Falzoni, F.; Bottini, C.; Frijia, G.; Steuber, T.; Erba, E. (2025). "Calcareous plankton and shallow-water benthic biocalcifiers: Resilience and extinction across the Cenomanian-Turonian Oceanic Anoxic Event 2". Palaeogeography, Palaeoclimatology, Palaeoecology. 112891. doi:10.1016/j.palaeo.2025.112891.
  143. ^ Perea, D.; Verde, M.; Mesa, V.; Soto, M.; Montenegro, F. (2025). "Bioerosion Structures on Dinosaur Bones Probably Made by Multituberculate Mammals and Dermestid Beetles (Guichón Formation, Late Cretaceous of Uruguay)". Fossil Studies. 3 (1). 2. doi:10.3390/fossils3010002.
  144. ^ Close, R. A.; Reijenga, B. R. (2025). "Tetrapod species–area relationships across the Cretaceous–Paleogene mass extinction". Proceedings of the National Academy of Sciences of the United States of America. 122 (13): e2419052122. doi:10.1073/pnas.2419052122. PMC 12002258. PMID 40131953.
  145. ^ Bennett, C. J.; Famoso, N. A.; Hembree, D. I. (2025). "Following their footsteps: Report of vertebrate fossil tracks from John Day Fossil Beds National Monument, Oregon, USA". Palaeontologia Electronica. 28 (1). 28.1.a11. doi:10.26879/1413.
  146. ^ Eshelman, R. E.; Bell, C. J.; Graham, R. W.; Semken, H. A.; Withnell, C. B.; Scarpetta, S. G.; James, H. F.; Godfrey, S. J.; Mead, J. I.; Hodnett, J.-P.; Grady, F. V. (2025). "Middle Pleistocene Cumberland Bone Cave Local Fauna, Allegany County, Maryland: A Systematic Revision and Paleoecological Interpretation of the Irvingtonian, Middle Appalachians, USA". Smithsonian Contributions to Paleobiology. 108: 1–305. doi:10.5479/si.28597193.
  147. ^ Lallensack, J.N.; Leonardi, G.; Falkingham, P.L. (2025). "Glossary of fossil tetrapod tracks". Palaeontologia Electronica. 28 (1). 28.1.a8. doi:10.26879/1389.
  148. ^ Mukherjee, I.; Corkrey, R.; Gregory, D.; Large, R.; Poole, A. M. (2025). "A billion years of geological drama – Boring or brilliant?". Gondwana Research. doi:10.1016/j.gr.2025.02.018.
  149. ^ Liu, J.; Hardisty, D. S.; Kasting, J. F.; Fakhraee, M.; Planavsky, N. J. (2025). "Evolution of the iodine cycle and the late stabilization of the Earth's ozone layer". Proceedings of the National Academy of Sciences of the United States of America. 122 (2). e2412898121. doi:10.1073/pnas.2412898121. PMC 11745384. PMID 39761407.
  150. ^ Lotem, N.; Rasmussen, B.; Zi, J.-W.; Zeichner, S. S.; Present, T. M.; Bar-On, Y. M.; Fischer, W. W. (2025). "Reconciling Archean organic-rich mudrocks with low primary productivity before the Great Oxygenation Event". Proceedings of the National Academy of Sciences of the United States of America. 122 (2). e2417673121. doi:10.1073/pnas.2417673121. PMC 11745403. PMID 39761395.
  151. ^ Farrell, T. P.; Cothren, H. R.; Sundberg, F. A.; Schmitz, M. D.; Dehler, C. M.; Landing, E.; Karlstrom, K. E.; Crossey, L. J.; Hagadorn, J. W. (2025). "Revising the late Cambrian time scale and the duration of the SPICE event using a novel Bayesian age modeling approach". GSA Bulletin. doi:10.1130/B37919.1.
  152. ^ Cowen, M. B.; de Rafélis, M.; Ségalen, L.; Kear, B. P.; Dumont, M.; Žigaitė, Ž. (2025). "Visualizing and quantifying biomineral preservation in fossil vertebrate dental remains". PeerJ. 13. e18763. doi:10.7717/peerj.18763. PMC 11700492. PMID 39763693.
  153. ^ Wang, X.; Grasby, S. E.; Cawood, P. A.; Zhao, H.; Chen, Z.-Q.; Hedhli, M.; Lyu, Z.; Sun, G.; Hao, F. (2025). "Photic-zone euxinia had a major role in the Devonian-Carboniferous boundary mass extinction". Communications Earth & Environment. 6. 283. doi:10.1038/s43247-025-02260-x.
  154. ^ Mann, A.; Nelson, W. J.; Hook, R. W.; Elrick, S. D. (2025). "The lost Permo-Carboniferous vertebrate deposit of Horseshoe Bend near Danville, Vermilion County, Illinois". Journal of Paleontology. 98 (5): 838–854. doi:10.1017/jpa.2024.30.
  155. ^ Matsumoto, H.; Shirai, K.; Ishikawa, A.; Ohkouchi, N.; Ogawa, N. O.; Tejada, M. L. G.; Ando, A.; Kuroda, J.; Suzuki, K. (2025). "Multidisciplinary evidence for synchroneity between Ontong Java Nui volcanism and early Aptian oceanic anoxic event 1a". Science Advances. 11 (9). eadt0204. doi:10.1126/sciadv.adt0204. PMC 11864177. PMID 40009661.
  156. ^ Albert, G.; Budai, S.; Csiki-Sava, Z.; Makádi, L.; Ţabără, D.; Árvai, V.; Bălc, R.; Bindiu-Haitonic, R.; Ducea, M. N.; Botfalvai, G. (2025). "Age and palaeoenvironmental constraints on the earliest dinosaur-bearing strata of the Densuș-Ciula Formation (Hațeg Basin, Romania): evidence of their late Campanian-early Maastrichtian syntectonic deposition". Cretaceous Research. 106095. doi:10.1016/j.cretres.2025.106095.
  157. ^ Westerhold, T.; Dallanave, E.; Penman, D.; Schoene, B.; Röhl, U.; Gussone, N.; Kuroda, J. (2025). "Earth orbital rhythms links timing of Deccan trap volcanism phases and global climate change". Science Advances. 11 (10). eadr8584. doi:10.1126/sciadv.adr8584. PMC 11887795. PMID 40053583.
  158. ^ Rodiouchkina, K.; Goderis, S.; Senel, C. B.; Kaskes, P.; Karatekin, Ö.; Böttcher, M. E.; Rodushkin, I.; Vellekoop, J.; Claeys, P.; Vanhaecke, F. (2025). "Reduced contribution of sulfur to the mass extinction associated with the Chicxulub impact event". Nature Communications. 16 (1). 620. doi:10.1038/s41467-024-55145-6. PMC 11739411. PMID 39819896.
  159. ^ Bai, B.; Li, Q.; Zhou, X.-Y.; Wang, X.-Y.; Xu, R.-C.; Zhang, X.-Y.; Quan, S.-S.; Meng, J.; Wang, Y.-Q. (2025). "Litho- and biostratigraphy of the East Mesa in Shara Murun region of the Erlian Basin, Inner Mongolia, China, and the subdivision of the Ulangochuian Asian Land Mammal Age". American Museum Novitates. 4034: 1–32. doi:10.1206/4034.1. hdl:2246/7431.
  160. ^ Tholt, A.; Başoğlu, O.; Bektaş, Y.; Bernor, R.; Carlson, J. P.; Dağ, Ö.; Doğan, U.; Erkman, A. C.; Kaya, F.; Kaymakçı, N.; Gözlük Kırmızıoğlu, P.; Meijers, M. J. M.; Kahya Parıldar, Ö.; Pehlevan, C.; Şimşek, E.; White, T.; Renne, P. (2025). "Building better biochronology: New fossils and 40Ar/39Ar radioisotopic dates from Central Anatolia". Proceedings of the National Academy of Sciences of the United States of America. 122 (12). e2424428122. doi:10.1073/pnas.2424428122. PMC 11962512.
  161. ^ Lindahl, A.; Epp, L. S.; Boessenkool, S.; Pedersen, M. W.; Brace, S.; Heintzman, P. D.; Dalén, L.; Díez del Molino, D. (2025). "Palaeogenomic inference of biodiversity dynamics across Quaternary timescales". Nature Reviews Biodiversity: 1–15. doi:10.1038/s44358-025-00033-0.
  162. ^ Catalano, S. A.; Escapa, I.; Pugh, K. D.; Hammond, A. S.; Goloboff, P.; Almécija, S. (2025). "PlaceMyFossils: An Integrative Approach to Analyze and Visualize the Phylogenetic Placement of Fossils Using Backbone Trees". Systematic Biology. doi:10.1093/sysbio/syaf025. PMID 40244059.
  163. ^ Jurikova, H.; Garbelli, C.; Whiteford, R.; Reeves, T.; Laker, G. M.; Liebetrau, V.; Gutjahr, M.; Eisenhauer, A.; Savickaite, K.; Leng, M. J.; Iurino, D. A.; Viaretti, M.; Tomašových, A.; Zhang, Y.; Wang, W.; Shi, G. R.; Shen, S.; Rae, J. W. B.; Angiolini, L. (2025). "Rapid rise in atmospheric CO2 marked the end of the Late Palaeozoic Ice Age". Nature Geoscience: 1–7. doi:10.1038/s41561-024-01610-2. PMC 11732749.
  164. ^ Lu, C.; Lin, M.-Q.; Shen, J.; Ji, X.-K.; Yang, C.-M.; Zhang, Z.-H.; He, Q.; Sun, M.-D.; Xu, Y.-G. (2025). "A continental record of Early Cretaceous (Aptian) vegetation and climate change based on palynology and clay mineralogy from the North China Craton". Palaeogeography, Palaeoclimatology, Palaeoecology. 112750. doi:10.1016/j.palaeo.2025.112750.
  165. ^ Markowska, M.; Vonhof, H. B.; Groucutt, H. S.; Breeze, P. S.; Drake, N.; Stewart, M.; Albert, R.; Andrieux, E.; Blinkhorn, J.; Boivin, N.; Budsky, A.; Clark-Wilson, R.; Fleitmann, D.; Gerdes, A.; Martin, A. N.; Martínez-García, A.; Nicholson, S. L.; Price, G. J.; Scerri, E. M. L.; Scholz, D.; Vanwezer, N.; Weber, M.; Alsharekh, A. M.; Al Omari, A. A.; Al-Mufarreh, Y. S. A.; Al-Jibreen, F.; Alqahtani, M.; Al-Shanti, M.; Zalmout, I.; Petraglia, M. D.; Haug, G. H. (2025). "Recurrent humid phases in Arabia over the past 8 million years". Nature: 1–8. doi:10.1038/s41586-025-08859-6.
  166. ^ Riddell-Young, B.; Lee, J. E.; Brook, E. J.; Schmitt, J.; Fischer, H.; Bauska, T. K.; Menking, J. A.; Iseli, R.; Clark, J. R. (2025). "Abrupt changes in biomass burning during the last glacial period". Nature. 637 (8044): 91–96. doi:10.1038/s41586-024-08363-3. PMID 39743610.
  167. ^ Warken, S. F.; Schmitt, A. K.; Scholz, D.; Hertwig, A.; Weber, M.; Mertz-Kraus, R.; Reinig, F.; Esper, J.; Sigl, M. (2025). "Discovery of Laacher See eruption in speleothem record synchronizes Greenland and central European Late Glacial climate change". Science Advances. 11 (3). eadt4057. doi:10.1126/sciadv.adt4057. PMC 11734736. PMID 39813351.