Djupadal Formation
Djupadal Formation | |
---|---|
Stratigraphic range: Pliensbachian-Toarcian ~ A Volcanic neck suggest 176.7 ± 0.5 Ma, Late Toarcian Age | |
![]() About 10 m south of the shore of the Korsaröd lake exposed layers of the unit are known | |
Type | Formation |
Unit of | Central Skåne Volcanic Province |
Sub-units | (in part) Sapropel at Sandåkra |
Underlies | Cuaternary Sediments |
Overlies | Höör Sandstone, Brandsberga and Kolleberga erratics and (in part) Sapropel at Sandåkra |
Thickness | Up to 60 m (200 ft)[1] |
Lithology | |
Primary | Basalt Tuff, Veined Gneiss[1] |
Other | Sandstone, Clay and Conglomerate |
Location | |
Coordinates | 55°59′N 13°38′E / 55.98°N 13.63°E |
Approximate paleocoordinates | Approx. 35°N |
Region | Central Skåne County |
Country | ![]() |
Extent | 1,000 km2 (390 sq mi) |
Type section | |
Named for | Djupadalsmölla, Ljungbyhed |
Named by | Carita Augustsson[2] |
Year defined | 2001 |
Korsaröd Lagerstätten Location |
The Djupadal Formation is a geologic formation in Skåne County, southern Sweden. It is Early Jurassic (probably Pliensbachian-Toarcian, or Late Toarcian) in age. It is part of the Central Skåne Volcanic Province, know by the discovery of basalt tuff layers, including Sandåkra, Korsaröd and Djupadal. An original analysis of the location of Korsaröd led to a Toarcian-Aalenian age,[3][4][5] but was dismissed in 2016, when a series of Palynogical samples recovered a Late Pliensbachian and probably Lower Toarcian age for the Korsaröd Outcrop.[6] The same year this result was also challenged by an in-depth study of the Lilla Hagstad neck that yield a Late Toarcian Age.[7] The formation was deposited in the Central Skane region, linked to the late early Jurassic volcanism. The Korsaröd member includes a volcanic-derived Lagerstatten with exceptional fern finds.[8] The data provided by fossilized wood rings showed that the location of Korsaröd hosted a middle-latitude Mediterranean-type biome in the late Early Jurassic, with low rainfall ratio, delayed to seasonal events. Superimposed on this climate were the effects of a local active Strombolian Volcanism and hydrothermal activity.[9]
Description
[edit]Djupadalsmölla is a geological site in southern Sweden, notable for its volcanic tuff and related rock types formed from ancient volcanic activity.[10] First documented in 1826, the site contains basalts from early volcanic eruptions.[11] The Anneklev exposure near Höör revealed the first volcanic neck, with additional volcanic remnants at Jällabjär, Rallate, and Djupadalsmölla itself.[12] The rocks here are primarily tuff, containing basaltic bombs with pyroxene, olivine pseudomorphs, and occasional conifer wood fragments ranging from small pieces to large logs.[13] The Rönne River has carved a 20-meter-deep valley through the Precambrian basement, exposing Lower Jurassic strata, including volcanic tuff, on the southern valley side. These strata extend northwest, suggesting the valley follows a partially exhumed sub-Jurassic depression.[4] The valley floor includes modern sediments from a Late Weichselian meltwater channel and eroded fluvioglacial deposits.[14] A nearby roadcut shows kaolinized basement beneath Toarcian sediments, and a borehole penetrated 44 meters of kaolinized gneiss.[4] Small ridges, cupolas in gneiss, and tors in amphibolite are also visible at the valley bottom.[4]
Geology
[edit]
The Djupadalsmölla site lies within the Sorgenfrei-Tornquist Zone (STZ), a 20–60 km wide fracture zone in southern Sweden and the Baltic Sea, part of the larger Tornquist Lineament stretching over 1000 km from the North Sea to the Black Sea.[15][16] This zone marks the boundary between the East European Craton and Early Paleozoic terranes of central Europe.[17] The STZ formed through continental rifting from the Permian to Cretaceous, similar to the North Sea system, with complex horst and graben structures from Late Cretaceous–Paleogene tectonics.[18][19] Rifting from the Carboniferous to Mesozoic, linked to the breakup of Pangea, led to mafic alkaline magmatism, including a 70 km wide Permo-Carboniferous tholeiitic dyke swarm across Scania and Bornholm.[20] The Central Skåne Volcanic Province, a 30 by 40 km Mesozoic volcanic field, features around 100 volcanic plugs and necks forming steep hills in central Scania.[21] This volcanism likely originated from a continental lithospheric mantle reservoir or edge-driven mantle convection.[22]
Stratigraphy
[edit]The Djupadalsmölla pyroclastic deposit is up to 10 meters high and 20 meters wide, extending over 100 meters westward along the Rönne River valley.[23] It consists of a 3-meter-thick Jurassic sequence overlying kaolinized Paleozoic gneiss, starting with 2 meters of sandstone and claystone, topped by 1 meter of green-brownish tuffaceous rocks.[24] The tuff contains mostly lapilli (30–50%) and ash, with some red patches and concretions of coarse ash, calcite, and wood fragments.[25] The deposit suggests moderate explosivity, with short transport paths indicated by minimal mechanical weathering, thick layering, and few basaltic bombs. The presence of wood and lapilli points to terrestrial deposition, likely from Strombolian volcanism tied to a regional rift, as evidenced by over 100 volcanic necks in central Scania.[26][27]
A borehole (KBH2) at Djupadalsmölla provides detailed stratigraphy.[28] The crystalline basement is 6.32 meters of weathered red-whitish gneiss, transitioning to kaolinite at the top.[29] The Jurassic strata include light to dark gray shale with a 30 cm silt/clay layer and coal, showing microfaults and volcanic fragments. The volcanic sequence, 19.50 meters thick, consists of lapilli tuff cemented by calcite or zeolite, with felsic xenoliths and accidental lithics.[30] Four subunits include varying textures, cement types, and preserved wood, indicating a dynamic depositional environment.[31]
Other nearby sites, like Karup, show 1–1.5-meter-thick pyroclastic layers with abundant charred and silicified wood.[32] Koholma features 0.5 meters of green-brown tuff with large clasts and plant remains, likely from volcanic sliding flows.[33] The Korsaröd Lagerstätte, a key outcrop, contains well-preserved fern fossils, linked to the Djupadal Formation and interpreted as a lahar deposit, comparable to modern Rotorua, New Zealand.[34][35]
Lithology
[edit]The rocks at Djupadalsmölla are primarily volcanic tuff, composed of ash, sand, lapilli, and partially disintegrated basalt, with colors varying from blue-green to brown depending on weathering.[36] The tuff contains rounded grains, from pea to hazelnut size, cemented mainly by limestone.[37] Cavities are filled with secondary minerals like calcite, zeolites, and viridite, with cement consisting of limnic limestone and sandstone.[38] The rocks are classified as either feldspar basalt or limburgite (glass basalt), containing augite, olivine, and minor magnetite and ferrite.[39][40] The glass-like sections are porous, with olivine crystals and minor serpentine, cemented by limestone.[41] Volcanic bombs include red gneiss and amphibolite, alongside mica diorite, limestone, clay slate, and shale sandstone, often containing wood fragments.[42][13]
At Lilla Hagstad, the lithology includes nepheline basalt with a dark glass matrix containing nepheline, augite, olivine, and magnetite crystals. Rounded lapilli, from hazelnut to pea size, indicate subaerial eruption products.[43] The KBH2 borehole reveals volcaniclastic grains with swelling clay minerals from degraded ash and lapilli, cemented by calcite, chlorite, zeolites, and iron-rich siderite.[44] Siliclastic interbeds, rare and initially linked to the Höör Sandstone, include arkose sandstone with ripple marks and sandstone/claystone layers with coal and plant remains.[25][45]
Age and Correlations
[edit]
The Djupadalsmölla deposits are dated to the Late Pliensbachian to Early Toarcian (approximately 184–176 Ma), based on palynology and radiometric data.[46][47] A high-precision 40Ar/39Ar age of 176.7 ± 0.5 Ma from Lilla Hagstad confirms a Late Toarcian age.[48] Earlier K–Ar dating yielded a range of 171–179 Ma, while 40Ar/39Ar analyses from volcanic plugs suggest 191–178 Ma.[49][50] Palynological evidence from KBH2, including marine palynomorphs and specific pollen, supports a Latest Pliensbachian age.[51] The formation overlies the Höör Sandstone and correlates with the Rydebäck and Katslösa members of the Rya Formation, the Röddinge Formation, and the Sorthat Formation in Denmark, sharing abundant fern-derived miospores.[52] It also aligns with the Fjerritslev and Gassum Formations in the Danish and Øresund Basins.[53] Volcanic material was transported by fluvial channels to the Green Series of Grimmen and Dobbertin (Grimmen Formation), with clays likely derived from weathered volcanic deposits.[54] Erosion of the underlying Hettangian–Sinemurian Höör Sandstone contributed sands to the North German Basin.[55]
Basin history
[edit]The Djupadalsmölla deposits formed within the Sorgenfrei-Tornquist Zone (STZ), part of the Trans-European Suture Zone separating Baltica from peri-Gondwanan terranes, active since the Late Ordovician (~445 Ma). At the Carboniferous–Permian boundary (~300 Ma), the Skagerrak-Centered Large Igneous Province influenced the region.[56]
The basins of southern Sweden and eastern Denmark formed in the Late Triassic to Early Jurassic, coinciding with the Central Atlantic Magmatic Province (CAMP), the largest igneous province in Earth’s history.[56] The Central Skåne Volcanic Province was active during the Pliensbachian to Toarcian (184–176 Ma), with Strombolian-style eruptions near Early Jurassic oceans.[57] No correlative pyroclastic beds have been identified in surrounding basins.[58] During the deposition of the Rya Formation’s Rydebäck Member, the Toarcian turnover caused widespread extinctions.[59]
Environment
[edit]The Djupadalsmölla deposits, with moderately sorted lapilli tuff and abundant wood, indicate a terrestrial environment influenced by freshwater.[26] Likely deposited in a fluvial setting with debris flows from nearby volcanoes like Äskekull, the site includes sandstone layers with ripple marks, suggesting coeval deposition with pyroclastics.[33][10] Barium-enriched zeolites suggest hydrothermal seawater circulation, causing diagenetic changes.[62]

The KBH2 borehole indicates a weathered basement, likely altered in the 25 Ma between the Rhaetian and Late Pliensbachian, followed by a dark shale layer suggesting a marine-influenced lagoon or bay.[63] Palynology reveals a humid, moderately warm climate with conifer-dominated forests, ginkgoes, seed ferns, and fern understories, occasionally disrupted by forest fires.[64] Volcanic clasts and charred wood confirm deposition through forested areas into a shallow, low-energy water body, followed by marine transgression.[65]
At Korsaröd, freshwater algae and fossilized wood suggest a river-influenced, Mediterranean-type biome with low rainfall and active Strombolian volcanism, comparable to modern Rotorua, New Zealand.[66][47] The vegetation, dominated by Cupressaceae and Erdtmanithecales, faced volcanic disruptions and hydrothermal activity, with rapid wood permineralization.[67] Well-preserved Osmundastrum ferns indicate a moist gully engulfed by lahar deposits.[68]
Sandåkra Lake System
[edit]North of the volcanic outcrops, the Sandåkra Sapropel, up to 150 meters thick, includes sandstones, clays, oil shales, and breccias, partly coeval with the Djupadal volcanism.[69][70] Deposited in a 70-meter-deep limnic/lacustrine deposit, likely formed in a tectonic breach or topographic depression, it lacks marine palynomorphs and contains volcanic minerals in its upper sections.[71] The lake, fed by ephemeral streams, developed anoxic conditions, similar to modern Lake Rotokakahi in New Zealand or the Toarcian Sichuan Lake (Ziliujing Formation), with upper sections influenced by volcanic material akin to the Waimangu Volcanic Valley.[72][73]
Fossils
[edit]Pseudofungi
[edit]Color key
|
Notes Uncertain or tentative taxa are in small text; |
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Indeterminate |
|
|
Was recovered from the petiole of the holotype of Osmundastrum pulchellum and interpreted as a peronosporomycete with parasitic or saprotrophic relation with this part of the plant. If the identification of the oogonia of peronosporomycetes is correct, then this implies regularly moist conditions for the growth of Osmundastrum pulchellum and this is consistent with the general habitat preferences of extant Osmundastrum.[68] |
![]() |
Fungi
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Indeterminate |
|
|
From the petiole and the root of Osmundastrum pulchellum where recovered thread-like structures, identified as derived from a pathogenic or saprotrophic fungus invading necrotic tissues of the host plant. The fungus' interaction with the plant was probably mycorrhizal.[68] |
![]() |
Acritarchs
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Acritarch | Incertae sedis | ||
|
|
Acritarch | Incertae sedis | ||
|
|
Acritarch | Incertae sedis | ||
|
|
Acritarch | Incertae sedis | ||
|
|
Acritarch | Incertae sedis |
Dinoflagellates
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Cysts |
A marine/brackish dinoflagellate, member of the family Pterospermopsidaceae inside Gonyaulacales. |
||
|
|
Cysts |
A marine/brackish Dinoflagellate, considered a primitive member of the order Peridiniales. A possible Fennoscandian endemism |
||
|
|
Cysts |
A marine/brackish dinoflagellate, member of the family Mancodinioideae. |
||
|
|
Cysts |
A marine/brackish dinoflagellate, considered a primitive member of the order Peridiniales. |
||
|
|
Cysts |
A marine/brackish dinoflagellate, member of the order Gonyaulacales. |
||
|
|
Cysts |
A marine/brackish dinoflagellate, type member of the family Nannoceratopsiaceae. |
Chlorophyta
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Miospores |
A freshwater algae, type member of Botryococcaceae inside Chlorophyta |
![]() | |
|
|
Miospores |
A brackish/marine algae, member of Pterospermopsidaceae. |
||
|
|
Miospores |
A freshwater algae, member of Zygnemataceae inside Charophyceae. On some samples is the only recovered algae. |
||
|
|
Miospores |
A brackish/marine algae, member of Prasinophyceae. |
||
|
|
Miospores |
A brackish/marine algae, member of Zygnemataceae. |
||
|
|
Miospores |
A freshwater algae, member of Hydrodictyaceae inside Chlorophyceae. |
![]() | |
|
|
Miospores |
A brackish/marine algae, member of Pyramimonadaceae. |
Bryophyta
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Miospores |
A miospore, incertae sedis inside Sphagnopsida. |
||
|
|
Miospores |
A miospore, related with the family Notothyladaceae inside Anthocerotopsida. |
||
|
|
Miospores |
A miospore, incertae sedis inside Sphagnopsida. |
||
|
|
Miospores |
A miospore, member of Sphagnaceae inside Sphagnopsida. The most abundant bryophyte spore |
![]() |
Lycophyta
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Miospores |
A miospore, affinities with Selaginellaceae or Lycopodiaceae inside Lycopodiopsida. |
||
|
|
Miospores |
A miospore, incertae sedis inside Lycopodiopsida. |
||
D. crassus |
|
Miospores |
A miospore, affinities with Pleuromeiaceae, Selaginellaceae and Lycopodiaceae inside Lycopodiopsida. |
||
|
|
Miospores |
A miospore, incertae sedis inside Lycopodiopsida. |
||
|
|
Miospores |
A miospore, incertae sedis inside Lycopodiopsida. |
||
|
|
Miospores |
A miospore, affinities with Selaginellaceae or Lycopodiaceae inside Lycopodiopsida. The most abundant Lycopsid spore recovered locally. |
![]() | |
|
|
Miospores |
A miospore, affinities with Lycopodiaceae inside Lycopodiopsida. Diverse, but less abundant |
![]() | |
|
|
Epiphytic lycopsid roots |
External exotic roots are preserved within detritus-filled cavities between the petiole bases of Osmundastrum pulchellum, with wall thickenings similar to the vasculature evident in ancient and modern herbaceous lycopsids.[82] |
Equisetopsida
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Miospores |
A miospore, affinities with Equisetaceae inside Equisetales. Horsetails, herbaceous flora related to high humid environments, flooding tolerant plants. |
|
Filicopsida
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Miospores |
Affinities with the Botryopteridaceae inside Filicopsida. Reworked from primitive ferns found in Devonian and Carboniferous rocks of Europe |
||
A. varians |
|
Miospores |
A miospore, affinities with Zygopteridaceae inside Filicopsida. |
||
|
|
Miospores |
A miospore, affinities with Matoniaceae inside Filicopsida. |
![]() | |
|
|
Miospores |
A miospore, affinities with Osmundaceae or Hymenophyllaceae inside Filicopsida. |
| |
|
|
Miospores |
A miospore, affinities with Osmundaceae inside Filicopsida. |
||
|
|
Miospores |
A miospore, related with Cyatheaceae and Dicksoniaceae inside Filicopsida. Recovered on the petiole and the root of Osmundastrum puchellum.[87] |
||
|
|
Miospores |
A miospore, ‘’incertae sedis’’ inside Filicopsida. |
||
|
|
Miospores |
A miospore, related with Cibotiaceae, Gleicheniaceae, Matoniaceae and Dipteridaceae inside Filicopsida. |
||
|
|
Miospores |
A miospore, related with Cibotiaceae inside Filicopsida. |
![]() | |
|
|
Miospores |
A miospore, related to Schizaeaceae inside Filicopsida. Miospores of the fern Klukia exilis |
||
|
|
Miospores |
A miospore, ‘’incertae sedis’’ inside Filicopsida. |
||
|
|
Miospores |
A miospore, affinities with Osmundaceae inside Filicopsida. |
||
|
|
Miospores |
A miospore, related with Cyatheaceae or Adiantaceae inside Filicopsida. Recovered on the petiole and the root of Osmundastrum puchellum.[87] Cyathidites minor almost certainly belong to well known Mesozoic species Coniopteris hymenophylloides and to other fossil cyatheaceous or dicksoniaceous ferns such as Eboracia lobifolia and Dicksonia mariopteri. |
![]() | |
|
|
Miospores |
A miospore, ‘’incertae sedis’’ inside Filicopsida. |
||
|
|
Miospores |
A miospore, related with Cyatheaceae, Dicksoniaceae, Gleicheniaceae and Schizaeaceae inside Filicopsida. Recovered on the petiole and the root of Osmundastrum puchellum.[87] |
||
|
|
Miospores |
A miospore, related with Gleicheniaceae inside Filicopsida. |
||
|
|
Miospores |
A miospore, affinities with Marattiales inside Filicopsida. |
||
|
|
Miospores |
A miospore, affinities with Ophioglossaceae inside Filicopsida. |
![]() | |
|
|
Miospores |
A miospore, affinities with Marattiaceae inside Filicopsida. The second most abundant spore recovered on the location |
![]() | |
|
|
Miospores |
A miospore, affinities with Matoniaceae inside Filicopsida. |
||
|
|
Miospores |
A miospore, affinities with Osmundaceae inside Filicopsida. |
| |
|
Permineralized Rizhome |
A small (50 cm tall) Royal Fern, member of Osmundaceae inside Filicopsida. The most known fossil of the location, thanks to its exceptional fossilized Rhizome, that has preserved Nuclei and Chromosomes, a fine subcellular detail has rarely been documented in fossils.[97] Its Rooted in DNA content was used to extrapolate relative genome, finding relationships with extant Osmundastrum cinnamomeum, and confirmed a monophyletic Osmunda.[98] |
![]() | ||
|
|
Miospores |
A miospore, ‘’incertae sedis’’ inside Filicopsida. |
||
|
|
Miospores |
A miospore, ‘’incertae sedis’’ inside Filicopsida. |
||
|
|
Miospores |
A miospore, ‘’incertae sedis’’ inside Filicopsida. |
||
|
|
Miospores |
A miospore, affinities with Polypodiaceae inside Filicopsida. |
||
|
|
Miospores |
A miospore, ‘’incertae sedis’’ inside Filicopsida. |
||
|
|
Miospores |
A miospore, ‘’incertae sedis’’ inside Filicopsida. |
||
|
|
Miospores |
A miospore, affinities with Osmundaceae inside Filicopsida. |
![]() | |
|
|
Miospores |
A miospore, ‘’incertae sedis’’ inside Filicopsida. |
||
|
|
Miospores |
A miospore, related with Cyatheaceae inside Filicopsida. Arboreal Fern Miospores. |
![]() |
Peltaspermales
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Pollen |
A pollen grain, affinities with Umkomasiaceae, Peltaspermaceae, Corystospermaceae and Caytoniaceae inside Pteridospermae. |
||
|
|
Pollen |
A pollen grain, affinities with Corystospermaceae inside Pteridospermae. |
||
|
|
Pollen |
A pollen grain, affinities with Caytoniaceae inside Pteridospermae. |
||
|
|
Pollen |
A pollen grain, affinities with Caytoniaceae inside Pteridospermae. |
||
|
|
Pollen |
A pollen grain, affinities with Caytoniaceae inside Pteridospermae. |
||
|
|
Pollen |
A pollen grain, affinities with Umkomasiaceae, Peltaspermaceae, Corystospermaceae and Caytoniaceae inside Pteridospermae. |
||
|
|
Pollen |
A pollen grain, affinities with Caytoniaceae inside Pteridospermae. |
||
|
|
Pollen |
A pollen grain, affinities with Umkomasiaceae, Peltaspermaceae, Corystospermaceae and Caytoniaceae inside Pteridospermae. |
||
|
|
Pollen |
A pollen grain, afinnities with Caytoniales inside Gymnospermopsida. |
Erdtmanithecales
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Pollen |
A pollen grain, affinities with Erdtmanithecales inside Spermatophytes. The Gymnosperms that produced Eucommiidites troedsonii pollen possibly dominated the understorey vegetation. |
Gnetales
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Pollen |
A pollen grain, affinities with Ephedraceae inside Gnetopsida. This Pollen grain was thought to be from Equisetaleans, yet was found in Ephedra chinleana |
![]() |
Cycadophyta
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Pollen |
A Pollen Grain, affinities with Cycadeoidaceae and Williamsoniaceae inside Bennettitales. A genus used to classify Bennetittalean grains of uncertain provenance |
||
|
|
Pollen |
A pollen grain, incertae sedis inside Cycadopsida, Corystospermaceae and Araucariaceae. Is among the most abundant flora recovered on the upper section of the coeval Rya Formation, and was found to be similar to the pollen of the extant Encephalartos laevifolius. |
![]() | |
|
|
Pollen |
A pollen grain, incertae sedis inside Cycadopsida, Bennettitales, and Axelrodiales |
||
|
|
Coalified Cuticles |
A Cycad, afinnities with Cycadidae inside Cycadopsida. |
||
|
|
Pollen |
A pollen grain, incertae sedis inside Cycadopsida. It also can be pollen from Ginkgoaceae. |
![]() | |
|
|
Pollen |
A pollen grain, incertae sedis inside Cycadopsida. It also can be pollen from Ginkgoaceae. |
||
|
|
Pollen |
A pollen grain, incertae sedis inside Cycadopsida. It also can be pollen from Ginkgoaceae. |
||
|
|
Leaf Impression |
A Bennetite, afinnities with Williamsoniaceae inside Bennettitales. This single impression of a bennettitalean leaf fragment found in a fine ash layer constituted the only foliar remains identified within the volcaniclastic deposit of Korsaröd |
![]() |
Ginkgophyta
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Pollen |
A pollen grain, affinities with Ginkgoales inside Ginkgophyta. Ginkgoales trend to spike towards the Toarcian in the Northern European region, as seen in the coeval Sorthat Formation of Bornholm |
|
Coniferophyta
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Pollen |
A pollen grain, affinites with the family Araucariaceae inside Pinales. |
||
|
|
Pollen |
A pollen grain, affinites with the family Araucariaceae inside Pinales. |
||
|
|
Pollen |
A pollen grain, affinities with Pinaceae inside Coniferophyta. |
![]() | |
|
|
Pollen |
A pollen grain, affinities with both Sciadopityaceae and Miroviaceae inside Pinopsida. This Pollen resemblance with extant Sciadopitys suggest that Miroviaceae can be an extinct lineage of sciadopityaceaous-like plants |
![]() | |
|
|
Pollen |
A pollen grain, affinities with Cheirolepidiaceae inside Coniferophyta. |
||
|
|
Pollen |
A pollen grain, affinities with Cupressaceae inside Coniferophyta. Lowland (coastal) indicator |
||
|
|
Pollen |
A pollen grain, affinites with the family Araucariaceae inside Pinales. |
||
|
|
Pollen |
A pollen grain, affinities with Taxodiaceae and Cupressaceae inside Coniferophyta. Its abundance at Sandåkra Borehole can indicate the presence of a Taxodium Swamp-like habitat |
||
|
|
Pollen |
A Pollen grain, affinities with Podocarpaceae and Cupressaceae inside Coniferophyta. |
![]() | |
|
|
Pollen |
A pollen grain, affinities with Taxodiaceae and Cupressaceae inside Coniferophyta. Affiliated with extant genera such as Thuja plicata |
![]() | |
|
|
Coalified cuticles |
A conifer, affinities with Piceoideae inside Pinaceae. One of the branched leaves found wears ano organic structure that resembles extant Spruces. Likely belong to the common Picea-like foliage of Pityocladus |
||
|
|
Coalified cuticles |
A conifer, afinnities with Pinoideae inside Pinaceae. In the initial revision of Djupadalsmölla Nathorst determined that some of the plant remains come from conifers. Latter revision showed that three clearly distinct species are represented and two resemble the genus Pinus. Likely belong to Schizolepidopsis, as is the most common Pinaceae in the Eurasian region in the Jurassic |
||
|
|
Pollen |
A pollen grain, affinities with Pinaceae inside Coniferophyta. |
![]() | |
|
|
Fossil wood |
A conifer, affinities with Pinaceae (Probably Abietoideae) inside Coniferophyta. Referred originally to the genus Cedroxylon, using it as reference to establish an Eocene age for the volcanic deposits, as similar wood from Eocene age was recovered from Jutland.[119] This genus has been found to not be suitable to Mesozoic woods, and material similar to the one recovered on the volcanic deposits has been assigned to Tiloxylon (=Protocedroxylon), also known in the Toarcian of Greenland.[120] |
||
|
|
Fossil Wood |
A conifer, affinities with Piceoideae inside Coniferophyta. Various Pinus-like woods are identified in Djupadalsmölla, they indicate that the lava flows flowed from a nearby forest setting. |
||
|
|
Fossil wood |
A conifer, affinities with Cupressaceae inside Coniferophyta. The main diagnostic wood recovered locally, identified based on the possession of uniseriate rays with smooth walls, pointed oblique oopores, absence of axial parenchyma, and tracheid radial walls. It resembles the extant Thuja plicata, but hosts a mean rings more similar to Juniperus thurifera. A few fossil wood specimens clearly represent portions of large trunks, with at least one fragment derived from a trunk of 1.68 m in diameter (with estimated c.5.3 m). Although, most specimens represent lateral branches or even roots of small size (10 cm long and 5 cm wide).[123] Its growth rings are distinct in all wood samples.[124] |
![]() | |
|
|
Pollen |
A pollen grain, affinities with Podocarpaceae inside Coniferophyta. |
||
|
|
Pollen |
A pollen grain, incertae sedis affinities inside Coniferophyta. |
||
|
|
Pollen |
A pollen grain, affinities with Podocarpaceae and Pinaceae inside Coniferophyta. |
||
|
|
Pollen |
A pollen grain, incertae sedis inside Coniferophyta. |
||
|
|
Pollen |
A pollen grain, affinities with Cheirolepidiaceae inside Coniferophyta. |
||
|
|
Pollen |
A pollen grain, affinities with Pinaceae inside Coniferophyta. |
||
|
|
Pollen |
A pollen grain, affinities with Pinaceae inside Coniferophyta. |
Arachnida
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Indeterminate |
|
|
On the petiole of Osmundastrum puchellum excavations up to 715 μm in diameter are evident, filled with pellets that resemble the coprolites of Oribatid mites found also on Paleozoic and Mesozoic Woods.[87] |
![]() |
See also
[edit]- Mizur Formation, North Caucasus
- Sachrang Formation, Austria
- Saubach Formation, Austria
- Posidonia Shale, Lagerstätte in Germany
- Ciechocinek Formation, Germany and Poland
- Calcare di Sogno, Italy
- Marne di Monte Serrone, Italy
- Lava Formation, Lithuania
- Krempachy Marl Formation, Poland and Slovakia
- Rya Formation, Sweden
References
[edit]- ^ a b Lidmar-Bergström, Olsson, & Olvmo (1997) p. 98
- ^ Augustsson (2001) p. 23
- ^ Tralau (1973) p. 128
- ^ a b c d Lidmar-Bergström, Olsson, & Olvmo (1997) p. 99
- ^ Sivhed (1984) p. 26
- ^ Vajda, Linderson & McLoughlin (2016) p. 127
- ^ Tappe, Smart, Stracke, Romer, Prelević & van den Bogaard (2016) p. 30
- ^ Vajda, Linderson & McLoughlin (2016) p. 128
- ^ Vajda, Linderson & McLoughlin (2016) p. 141
- ^ a b Augustsson (2001) p. 24
- ^ Kjellen (1902) p. 208
- ^ Kjellen (1902) p. 209
- ^ a b Eichstädt (1883) p. 412
- ^ Ringberg (1984) p. 59
- ^ Liboriussen, Ashton & Tygesen (1987) p. 22
- ^ Berthelsen (1992) p. 154
- ^ Berthelsen (1992) p. 162
- ^ Erlström, Thomas & Sivhed (1997) p. 210
- ^ Norling & Bergström (1987) p. 17
- ^ Obst, Solyom & Johansson (2004) p. 261
- ^ Tappe (2004) p. 327
- ^ Tappe, Smart, Stracke, Romer, Prelević & van den Bogaard (2016) p. 28
- ^ Eichstädt (1883) p. 413
- ^ Norling, Ahlberg, Erlström & Sivhed (1993) p. 50
- ^ a b Augustsson (2001) p. 25
- ^ a b Augustsson (2001) p. 27
- ^ Augustsson (2001) p. 28
- ^ Wahlquist (2023) p.7
- ^ Wahlquist (2023) p.11
- ^ Wahlquist (2023) p.15
- ^ Wahlquist (2023) p.17-19
- ^ Augustsson (1999) p. 5-6
- ^ a b Norling, Ahlberg, Erlström & Sivhed (1993) p. 52
- ^ Bomfleur, McLoughlin & Vajda (2014) p. 1376
- ^ Vajda, Linderson & McLoughlin (2016) p. 139
- ^ Eichstädt (1883) p. 408
- ^ Eichstädt (1883) p. 409
- ^ Svedmark (1883) p. 575
- ^ Eichstädt (1883b) p. 776
- ^ Svedmark (1883) p. 576
- ^ Eichstädt (1883) p. 411
- ^ Svedmark (1883) p. 581
- ^ Henning (1902) p. 357
- ^ Wahlquist (2023) p.20
- ^ Norling, Ahlberg, Erlström & Sivhed (1993) p. 51
- ^ a b c d e f g h i j k Bomfleur, McLoughlin & Vajda (2014), Supplementary Material p. 2
- ^ a b Vajda, Linderson & McLoughlin (2016) p. 134
- ^ Tappe, Smart, Stracke, Romer, Prelević & van den Bogaard (2016) p. 34
- ^ Klingspor (1976) p. 207
- ^ Bergelin (2009) p. 168
- ^ Wahlquist (2023) p.30
- ^ Ahlberg, Sivhed & Erlström (2003) p. 529
- ^ Ahlberg, Sivhed & Erlström (2003) p. 534
- ^ Stumpf, Ansorge & Grimmberger (2016) p. 137
- ^ Stumpf, Ansorge & Grimmberger (2016) p. 138
- ^ a b Bryan & Ferrari, 2013, p.1058
- ^ Bergelin, 2009 p. 166
- ^ Ahlberg et al., 2003, p.539
- ^ Harries & Little, 1999
- ^ Augustsson (1999) p. 14
- ^ Vajda, McLoughlin & Bomfleur (2014) p. 26
- ^ Augustsson (1999) p. 15
- ^ Wahlquist (2023) p.26-27
- ^ Wahlquist (2023) p.28
- ^ Wahlquist (2023) p.29
- ^ a b c d e f g h i j k l m n o p q r s Vajda, Linderson & McLoughlin (2016) p. 133
- ^ Vajda, Linderson & McLoughlin (2016) p. 142
- ^ a b c d e McLoughlin & Bomfleur (2016) p. 93
- ^ Nilsson (1958) p. 3
- ^ Tralau (1973) p. 151
- ^ Nilsson (1958) p. 5
- ^ Nilsson (1958) p. 6
- ^ Tralau (1973) p. 154
- ^ a b c d e f g h i j k l m n Bölau & Kockel-Brosius (1965) p. 55
- ^ a b c d e f g h i j k l m Wahlquist (2023) p.22
- ^ Nilsson (1958) p. 33
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac Wahlquist (2023), p23
- ^ a b c d e f g h i j k l m Vajda, Linderson & McLoughlin (2016) p. 132
- ^ a b Nilsson (1958) p. 29
- ^ Tralau (1973) p. 130
- ^ McLoughlin & Bomfleur (2016) p. 88
- ^ McLoughlin & Bomfleur (2016) p. 89
- ^ Nilsson (1958) p. 31
- ^ Nilsson (1958) p. 32
- ^ Tralau (1973) p. 132
- ^ Nilsson (1958) p. 34
- ^ a b c d e f g h McLoughlin & Bomfleur (2016) p. 91
- ^ Nilsson (1958) p. 38
- ^ Tralau (1973) p. 134
- ^ Nilsson (1958) p. 40
- ^ Nilsson (1958) p. 41
- ^ a b Nilsson (1958) p. 43
- ^ a b Tralau (1973) p. 131
- ^ a b Nilsson (1958) p. 50
- ^ Bomfleur, Grimm & McLoughlin (2014) p. 5
- ^ Bomfleur, Grimm & McLoughlin (2015) p. 6
- ^ Bomfleur, Grimm & McLoughlin (2015) p. 8
- ^ Bomfleur, McLoughlin & Vajda (2014) p. 1378
- ^ a b Nilsson (1958) p. 45
- ^ a b Nilsson (1958) p. 47
- ^ a b Nilsson (1958) p. 51
- ^ Tralau (1973) p. 133
- ^ Nilsson (1958) p. 30
- ^ Tralau (1973) p. 135
- ^ a b c d e f g h i j k l m n o Wahlquist (2023) p.21
- ^ a b Nilsson (1958) p. 35
- ^ a b Nilsson (1958) p. 42
- ^ a b Nilsson (1958) p. 44
- ^ a b Nilsson (1958) p. 46
- ^ Nilsson (1958) p. 52
- ^ Nilsson (1958) p. 36
- ^ Tullberg & Nathorst (1880) p. 232
- ^ McLoughlin & Bomfleur (2016) p. 87
- ^ Nilsson (1958) p. 37
- ^ a b Nilsson (1958) p. 48
- ^ Tralau (1973) p. 136
- ^ Eichstädt (1883) p. 115
- ^ Eichstädt (1883) p. 114
- ^ a b Tralau (1973) p. 121
- ^ Philippe & Bamford (2008) p. 193
- ^ Eichstädt (1883) p. 415
- ^ Vajda, Linderson & McLoughlin (2016) p. 138
- ^ Vajda, Linderson & McLoughlin (2016) p. 136
- ^ Vajda, Linderson & McLoughlin (2016) p. 137
- ^ Nilsson (1958) p. 49
Bibliography
[edit]- Wahlqvist, Per (2023). Stratigraphy and palaeoenvironment of the early Jurassic volcaniclastic strata at Djupadalsmölla, central Skåne, Sweden (PDF) (Master's thesis). Vol. 646. Lund University. Retrieved 24 May 2023.
- Vajda, V.; Linderson, H.; McLoughlin, S. (2016). "Disrupted vegetation as a response to Jurassic volcanism in southern Sweden". Geological Society, London, Special Publications. 434 (1): 127–147. Bibcode:2016GSLSP.434..127V. doi:10.1144/SP434.17. S2CID 53626549. Retrieved 30 July 2021.
Text was copied from this source, which is available under a Creative Commons Attribution 3.0 (CC BY 3.0) license.
- Stumpf, Sebastian; Ansorge, Jörg; Grimmberger, Gunther (2016). "Grätensandsteine und andere Geschiebe des oberen Lias (Toarcium) aus Norddeutschland" [Upper Liassic sandstones with fish remains (so-called Grätensandsteine) and other Toarcian glacial erratics from northern Germany]. Geschiebekunde Aktuell. 32 (4): 121–141. Retrieved 30 July 2021.
- McLoughlin, S.; Bomfleur, B. (2016). "Biotic interactions in an exceptionally well preserved osmundaceous fern rhizome from the Early Jurassic of Sweden". Palaeogeography, Palaeoclimatology, Palaeoecology. 464 (1): 86–96. Bibcode:2016PPP...464...86M. doi:10.1016/j.palaeo.2016.01.044.
- Tappe, S.; Smart, K. A.; Stracke, A.; Romer, R. L.; Prelević, D.; Van den Bogaard, P., P. (2016). "Melt evolution beneath a rifted craton edge: 40Ar/39Ar geochronology and Sr–Nd–Hf–Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic Shield". Geochimica et Cosmochimica Acta. 173 (1): 1–36. Bibcode:2016GeCoA.173....1T. doi:10.1016/j.gca.2015.10.006. Retrieved 30 July 2021.
- Bomfleur., B.; Grimm, G. W.; McLoughlin, S. (2015). "Osmunda pulchella sp. nov. from the Jurassic of Sweden—reconciling molecular and fossil evidence in the phylogeny of modern royal ferns (Osmundaceae)". BMC Evolutionary Biology. 15 (1): 126. Bibcode:2015BMCEE..15..126B. doi:10.1186/s12862-015-0400-7. PMC 4487210. PMID 26123220.
- Vajda, V.; McLoughlin, S.; Bomfleur, B. (2014). "Fossilfyndet i Korsaröd". Geologiskt Forum-Geological Society of Sweden. 82 (1): 24–29. Retrieved 30 July 2021.
- Bomfleur, B.; Grimm, G. W.; McLoughlin, S. (2014). "A fossil Osmunda from the Jurassic of Sweden—reconciling molecular and fossil evidence in the phylogeny of Osmundaceae". bioRxiv: 005777. doi:10.1101/005777. S2CID 88109470. Retrieved 30 July 2021.
- Bomfleur, B.; McLoughlin, S.; Vajda, V. (2014). "Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns". Science. 343 (6177): 1376–1377. Bibcode:2014Sci...343.1376B. doi:10.1126/science.1249884. PMID 24653037. S2CID 38248823. Retrieved 30 July 2021.
- Torsvik, T. H.; Cocks, L. R. M. (2013). "Gondwana from top to base in space and time". Gondwana Research. 24 (3): 999–1030. Bibcode:2013GondR..24..999T. doi:10.1016/j.gr.2013.06.012. Retrieved 18 February 2022.
- Bergelin, I.; Obst, K.; Söderlund, U.; Larsson, K.; Johansson, L. (2011). "Mesozoic rift magmatism in the North Sea region: 40Ar/39Ar geochronology of Scanian basalts and geochemical constraints". International Journal of Earth Sciences. 100 (4): 787–804. Bibcode:2011IJEaS.100..787B. doi:10.1007/s00531-010-0516-3. S2CID 128811834.
- Bergelin, I. (2009). "Jurassic volcanism in Skåne, southern Sweden, and its relation to coeval regional and global events". GFF. 131 (1): 165–175. Bibcode:2009GFF...131..165B. doi:10.1080/11035890902851278. S2CID 128825994.
- Philippe, Marc; Bamford, Marion K. (2008). "A key to morphogenera used for Mesozoic conifer-like woods". Review of Palaeobotany and Palynology. 148 (2–4): 184–207. Bibcode:2008RPaPa.148..184P. doi:10.1016/j.revpalbo.2007.09.004. Retrieved 30 November 2021.
- Rehfeldt, Tatjana; Obst, Karsten; Johansson, Leif (2007). "Petrogenesis of ultramafic and mafic xenoliths from Mesozoic basanites in southern Sweden: constraints from mineral chemistry". International Journal of Earth Sciences. 96 (1): 433–450. Bibcode:2007IJEaS..96..433R. doi:10.1007/s00531-006-0116-4. S2CID 129737488. Retrieved 22 February 2022.
- Bergelin, I. (2006). "40Ar/39Ar Geochronology of Basalts in Scania, S Sweden: Evidence for Two Pulses at 191-178 Ma and 110 Ma, and Their Relation to the Break-up of Pangea". Geologiska Institutionen, Lunds Univ. 1 (1): 2–25. Retrieved 30 July 2021.
- Obst, K.; Solyom, Z.; Johansson, L. (2004). "Permo-Carboniferous extension-related magmatism at the SW margin of the Fennoscandian Shield". Geological Society, London, Special Publications. 223 (1): 259–288. Bibcode:2004GSLSP.223..259O. CiteSeerX 10.1.1.898.6908. doi:10.1144/GSL.SP.2004.223.01.12. S2CID 128716614.
- Tappe, S. (2004). "Mesozoic mafic alkaline magmatism of southern Scandinavia". Contributions to Mineralogy and Petrology. 148 (3): 312–334. Bibcode:2004CoMP..148..312T. doi:10.1007/s00410-004-0606-y. S2CID 140536796.
- Ahlberg., A.; Sivhed, U.; Erlström, M. (2003). "The Jurassic of Skåne, southern Sweden". GEUS Bulletin. 1 (1): 527–541. doi:10.34194/geusb.v1.4682.
- Augustsson, C. (2001). "Lapilli tuff as evidence of Early Jurassic Strombolian-type volcanism in Scania, southern Sweden". GFF. 123 (1): 23–28. Bibcode:2001GFF...123...23A. doi:10.1080/11035890101231023. S2CID 140544085.
- Harries, Peter J.; Little, Crispin T.S. (1999), "The early Toarcian (Early Jurassic) and the Cenomanian–Turonian (Late Cretaceous) mass extinctions: similarities and contrasts", Palaeogeography, Palaeoclimatology, Palaeoecology, 154 (1–2): 39–66, Bibcode:1999PPP...154...39H, doi:10.1016/S0031-0182(99)00086-3 Bibcode:1999PPP...154...39H
- Augustsson, C. (1999). "Lapillituff som bevis för underjurassisk vulkanism av strombolikaraktär i Skane". Examensarbete, Geologiska Institutionen, Lunds Universitet. 109 (1–16): 1–12. Retrieved 16 November 2021.
- Lidmar-Bergströml, K.; Olsson, S.; Olvmo, M. (1997). "Palaeosurfaces and associated saprolites in southern Sweden". Geological Society, London, Special Publications. 120 (1): 95–124. Bibcode:1997GSLSP.120...95L. doi:10.1144/GSL.SP.1997.120.01.07. S2CID 129229906.
- Erlström, M.; Thomas, S. A.; Deeks, N.; Sivhed, U. (1997). "Structure and tectonic evolution of the Tornquist Zone and adjacent sedimentary basins in Scania and the southern Baltic Sea area". Tectonophysics. 271 (4): 191–215. Bibcode:1997Tectp.271..191E. doi:10.1016/S0040-1951(96)00247-8. Retrieved 18 February 2022.
- Ahlberg, A.; Goldstein, R.H. (1996). "Fluid inclusions in quartz overgrowths: Evidence of Mid-Jurassic volcanic hot brine flushing at shallow burial depth in the Lower Jurassic Höör Sandstone, southern Sweden". GFF. 118 (4): 104. Bibcode:1996GFF...118R.104A. doi:10.1080/11035899609546426. Retrieved 8 January 2022.
- Norling, E.; Ahlberg, A.; Erlström, M.; Sivhed, U. (1993). "Guide to the Upper Triassic and Jurassic geology of Sweden". Sveriges Geologiska Undersökning. 82: 71.
- Bylund, G.; Halvorsen, E. (1993). "Palaeomagnetic study of Mesozoic basalts from Scania, southernmost Sweden". Geophysical Journal International. 114 (1): 138–144. Bibcode:1993GeoJI.114..138B. doi:10.1111/j.1365-246X.1993.tb01473.x.
- Berthelsen, A. (1992). From Precambrian to Variscan Europe. A continent revealed: the European geotraverse. Cambridge: Cambridge University Press. pp. 153–164.
- Liboriussen, J.; Ashton, P.; Tygesen, T. (1987). "The tectonic evolution of the Fennoscandian Border Zone in Denmark". Tectonophysics. 137 (4): 21–29. Bibcode:1987Tectp.137...21L. doi:10.1016/0040-1951(87)90310-6. Retrieved 18 February 2022.
- Norling, E.; Bergström, J. (1987). "Mesozoic and Cenozoic tectonic evolution of Scania, southern Sweden". Tectonophysics. 137 (1): 7–19. Bibcode:1987Tectp.137....7N. doi:10.1016/0040-1951(87)90309-X.
- Ringberg, B. (1984). "Cyclic Lamination in Proximal Varves Reflecting the Length of Summers during Late Weichsel in Southernmost Sweden". Climatic Changes on a Yearly to Millennial Basis. Vol. 1. pp. 57–62. doi:10.1007/978-94-015-7692-5_5. ISBN 978-90-481-8399-9.
- Sivhed., U. (1984). "Litho-and biostratigraphy of the Upper Triassic-Middle Jurassic in Scania, southern Sweden" (PDF). Sveriges geologiska undersökning. 78 (4): 1–30. Retrieved 30 July 2021.
- Klingspor, I. (1976). "Radiometric age-determination of basalts, dolerites and related syenite in Skåne, southern Sweden". GFF. 98 (1): 195–216. doi:10.1080/11035897609454371. Retrieved 30 July 2021.
- Tralau, H. (1973). "En palynologisk åldersbestämning av v ulkanisk aktivitet i Skåne". Fauna och Flora. 68 (1): 121–176.
- Bölau, E.; Kockel-Brosius, M. (1965). "Der tertiäre Vulkanismus in Zentralschonen, Südschweden: Mikropaläontologische Untersuchungen an Bohrproben aus Schonen" (PDF). Gleerup (1): 1–55. Retrieved 30 July 2021.
- Nilsson, T. (1958). "Ober das Vorkommen eines mesozoischen Sapropelgesteins in Schonen". Lunds Univ. Arsskrift, N. F. Avd. 54 (10): 1–12.
- Troedsson, Gustaf (1954). "Om lias-sandsteuen vid Brandsberga och Kolleberga". Geologiska Föreningen i Stockholm Förhandlingar. 76 (4): 605–612. doi:10.1080/11035895409453582. Retrieved 13 December 2021.
- Troedsson, G. (1948). "On rhythmic sedimentation in the Rhaetic-Liassic beds of Sweden" (PDF). In International Geological Congress.'Report of the Eighteenth Session, Great Britain. 1 (1): 64–72. Retrieved 13 December 2021.
- Troedsson, Gustaf T. (1940). "Om Höörs sandsten". Geologiska Föreningen i Stockholm Förhandlingar. 62 (3): 245–283. doi:10.1080/11035894009452796. Retrieved 5 March 2022.
- Norin, R. (1934). "Zur geologie der Südschwedischen basalte" (PDF). Meddelanden Fran Lunds Geologisk-Mineralogiska Institution. 103 (1): 1–88. Retrieved 22 February 2022.
- Norin, R. (1933). "Mineralogische und Petrologische Studien an den Basalten Schonens". GFF. 52 (1): 101–149. doi:10.1080/11035893309448840. Retrieved 22 February 2022.
- Törnebohm, Alfred Elis; Henning, Anders (1904). "Be-skrifning till blad 1 & 2, SGU". Geologische Karte.
- Henning, Anders (1902). "Basalt tuff von Lillö" (PDF). Centralblatt Mineral. Geol. Palaeont. 8 (1): 357–362. Retrieved 1 January 2022.
- Kjellen, R. (1902). "Bidrag till Sveriges endogena geografi". Geologiska Föreningen i Stockholm Förhandlingar. 24 (4): 193–220. doi:10.1080/11035890209449951.
- Svedmark, E. (1883). "Mikroskopisk undersökning af dé vid Djupadal i Skåne förekommande basaltbergarterna". Geologiska Föreningen i Stockholm Förhandlingar. 6 (12): 574–582. doi:10.1080/11035898309444104. Retrieved 2 February 2022.
- Eichstädt (1883b). "Ytterligare om basalt-tufjen vid Djupadal i Skåne". Geologiska Föreningen i Stockholm Förhandlingar. 6 (14): 774–783. doi:10.1080/11035898309444119. Retrieved 2 February 2022.
- Eichstädtat, F. (1883). "Om basalttuffen vid Djupadal i Skåne". Geologiska Föreningen i Stockholm Förhandlingar. 6 (10): 408–415. doi:10.1080/11035898309444082.
- Lundgren, B. (1882). "Undersökningar öfver Molluskfaunan i Sveriges äldre mesozoiska bildningar". Geologiska Föreningen i Stockholm Förhandlingar. 6 (3): 136–137. doi:10.1080/11035898209455546. Retrieved 13 December 2021.
- Eichstädt, F. (1882). "Skånes basalter, mikroskopiskt undersökta och beskrifna". Sveriges Geologiska Undersökning. 34 (2): 376–377. doi:10.1080/11035898309444074. Retrieved 22 February 2022.
- Tullberg, S.A. (1880). "Meddelande om nya fynd af musslor i Höörssandsten". Geologiska Föreningen i Stockholm Förhandlingar. 7 (5): 315–317. doi:10.1080/11035898009443938. Retrieved 5 March 2022.
- Tullberg, S.A.; Nathorst, A.G. (1880). "Meddelande om en växtlemningar innchällande basaltvacka-vid Djupadal i Skåne". Geologiska Föreningen i Stockholm Förhandlingar. 5 (5): 230–232. doi:10.1080/11035898009444984. Retrieved 4 March 2022.