From Wikipedia, the free encyclopedia
Construction for simplicial sets
In higher category theory in mathematics , the twisted diagonal of a simplicial set (for ∞-categories also called the twisted arrow ∞-category ) is a construction, which generalizes the twisted diagonal of a category to which it corresponds under the nerve construction. Since the twisted diagonal of a category is the category of elements of the Hom functor , the twisted diagonal of an ∞-category can be used to define the Hom functor of an ∞-category .
Twisted diagonal with the join operation [ edit ]
For a simplicial set
A
{\displaystyle A}
define a bisimplicial set and a simplicial set with the opposite simplicial set and the join of simplicial sets by:[ 1]
T
w
(
A
)
m
,
n
=
Hom
(
(
Δ
m
)
o
p
∗
Δ
n
,
A
)
,
{\displaystyle \mathbf {Tw} (A)_{m,n}=\operatorname {Hom} ((\Delta ^{m})^{\mathrm {op} }*\Delta ^{n},A),}
Tw
(
A
)
=
δ
∗
(
T
w
(
A
)
)
.
{\displaystyle \operatorname {Tw} (A)=\delta ^{*}(\mathbf {Tw} (A)).}
The canonical morphisms
(
Δ
m
)
o
p
→
(
Δ
m
)
o
p
∗
Δ
n
←
Δ
n
{\displaystyle (\Delta ^{m})^{\mathrm {op} }\rightarrow (\Delta ^{m})^{\mathrm {op} }*\Delta ^{n}\leftarrow \Delta ^{n}}
induce canonical morphisms
T
w
(
A
)
→
A
o
p
⊠
A
{\displaystyle \mathbf {Tw} (A)\rightarrow A^{\mathrm {op} }\boxtimes A}
and
Tw
(
A
)
→
A
o
p
×
A
{\displaystyle \operatorname {Tw} (A)\rightarrow A^{\mathrm {op} }\times A}
.[ 1]
Twisted diagonal with the diamond operation [ edit ]
For a simplicial set
A
{\displaystyle A}
define a bisimplicial set and a simplicial set with the diamond operation by:[ 2]
T
w
⋄
(
A
)
m
,
n
=
Hom
(
(
Δ
m
)
o
p
⋄
Δ
n
,
A
)
,
{\displaystyle \mathbf {Tw} _{\diamond }(A)_{m,n}=\operatorname {Hom} ((\Delta ^{m})^{\mathrm {op} }\diamond \Delta ^{n},A),}
Tw
⋄
(
A
)
=
δ
∗
(
T
w
⋄
(
A
)
)
.
{\displaystyle \operatorname {Tw} _{\diamond }(A)=\delta ^{*}(\mathbf {Tw} _{\diamond }(A)).}
The canonical morphisms
(
Δ
m
)
o
p
→
(
Δ
m
)
o
p
⋄
Δ
n
←
Δ
n
{\displaystyle (\Delta ^{m})^{\mathrm {op} }\rightarrow (\Delta ^{m})^{\mathrm {op} }\diamond \Delta ^{n}\leftarrow \Delta ^{n}}
induce canonical morphisms
T
w
⋄
(
A
)
→
A
o
p
⊠
A
{\displaystyle \mathbf {Tw} _{\diamond }(A)\rightarrow A^{\mathrm {op} }\boxtimes A}
and
S
⋄
(
A
)
→
A
o
p
×
A
{\displaystyle S_{\diamond }(A)\rightarrow A^{\mathrm {op} }\times A}
. The weak categorical equivalence
γ
(
Δ
m
)
o
p
,
Δ
n
:
(
Δ
m
)
o
p
⋄
Δ
n
→
(
Δ
m
)
o
p
∗
Δ
n
{\displaystyle \gamma _{(\Delta ^{m})^{\mathrm {op} },\Delta ^{n}}\colon (\Delta ^{m})^{\mathrm {op} }\diamond \Delta ^{n}\rightarrow (\Delta ^{m})^{\mathrm {op} }*\Delta ^{n}}
induces canonical morphisms
T
w
(
A
)
→
T
w
⋄
(
A
)
{\displaystyle \mathbf {Tw} (A)\rightarrow \mathbf {Tw} _{\diamond }(A)}
and
Tw
(
A
)
→
Tw
⋄
(
A
)
{\displaystyle \operatorname {Tw} (A)\rightarrow \operatorname {Tw} _{\diamond }(A)}
.
Under the nerve , the twisted diagonal of categories corresponds to the twisted diagonal of simplicial sets. Let
C
{\displaystyle {\mathcal {C}}}
be a small category, then:[ 3]
N
Tw
(
C
)
=
Tw
(
N
C
)
.
{\displaystyle N\operatorname {Tw} ({\mathcal {C}})=\operatorname {Tw} (N{\mathcal {C}}).}
For an ∞-category
A
{\displaystyle A}
, the canonical map
Tw
(
A
)
→
A
o
p
×
A
{\displaystyle \operatorname {Tw} (A)\rightarrow A^{\mathrm {op} }\times A}
is a left fibration. Therefore, the twisted diagonal
Tw
(
A
)
{\displaystyle \operatorname {Tw} (A)}
is also an ∞-category.[ 4] [ 5] [ 6]
For a Kan complex
A
{\displaystyle A}
, the canonical map
Tw
(
A
)
→
A
o
p
×
A
{\displaystyle \operatorname {Tw} (A)\rightarrow A^{\mathrm {op} }\times A}
is a Kan fibration. Therefore, the twisted diagonal
Tw
(
A
)
{\displaystyle \operatorname {Tw} (A)}
is also a Kan complex.[ 7]
For an ∞-category
A
{\displaystyle A}
, the canonical map
T
w
⋄
(
A
)
→
A
o
p
⊠
A
{\displaystyle \mathbf {Tw} _{\diamond }(A)\rightarrow A^{\mathrm {op} }\boxtimes A}
is a left bifibration and the canonical map
Tw
⋄
(
A
)
→
A
o
p
×
A
{\displaystyle \operatorname {Tw} _{\diamond }(A)\rightarrow A^{\mathrm {op} }\times A}
is a left fibration. Therefore, the simplicial set
Tw
⋄
(
A
)
{\displaystyle \operatorname {Tw} _{\diamond }(A)}
is also an ∞-category.[ 8]
For an ∞-category
A
{\displaystyle A}
, the canonical morphism
Tw
(
A
)
→
Tw
⋄
(
A
)
{\displaystyle \operatorname {Tw} (A)\rightarrow \operatorname {Tw} _{\diamond }(A)}
is a fiberwise equivalence of left fibrations over
A
o
p
×
A
{\displaystyle A^{\mathrm {op} }\times A}
.[ 9]
A functor
u
:
A
→
B
{\displaystyle u\colon A\rightarrow B}
between ∞-categories
A
{\displaystyle A}
and
B
{\displaystyle B}
is fully faithful if and only if the induced map:
Tw
(
A
)
→
(
A
o
p
×
A
)
×
B
o
p
×
B
Tw
(
B
)
{\displaystyle \operatorname {Tw} (A)\rightarrow (A^{\mathrm {op} }\times A)\times _{B^{\mathrm {op} }\times B}\operatorname {Tw} (B)}
is a fiberwise equivalence over
A
o
p
×
A
{\displaystyle A^{\mathrm {op} }\times A}
.[ 10]
For a functor
u
:
A
→
B
{\displaystyle u\colon A\rightarrow B}
between ∞-categories
A
{\displaystyle A}
and
B
{\displaystyle B}
, the induced maps:
Tw
(
A
)
→
(
A
o
p
×
B
)
×
B
o
p
×
B
Tw
(
B
)
,
{\displaystyle \operatorname {Tw} (A)\rightarrow (A^{\mathrm {op} }\times B)\times _{B^{\mathrm {op} }\times B}\operatorname {Tw} (B),}
Tw
(
A
)
→
(
B
o
p
×
A
)
×
B
o
p
×
B
Tw
(
B
)
,
{\displaystyle \operatorname {Tw} (A)\rightarrow (B^{\mathrm {op} }\times A)\times _{B^{\mathrm {op} }\times B}\operatorname {Tw} (B),}
are cofinal.[ 11]
^ a b Cisinski 2019, 5.6.1.
^ Cisinski 2019, 5.6.10.
^ Kerodon, Proposition 8.1.1.10.
^ Cisinski 2019, Proposition 5.6.2.
^ Kerodon, Proposition 8.1.1.11.
^ Kerodon, Corollary 8.1.1.12.
^ Kerodon, Corollary 8.1.1.13.
^ Cisinski 2019, Proposition 5.6.12.
^ Cisinski 2019, Corollary 5.6.14.
^ Cisinski 2019, Corollary 5.6.6.
^ Cisinski 2019, Proposition 5.6.9.