WASP-64
Observation data Epoch J2000.0 Equinox J2000.0 | |
---|---|
Constellation | Canis Major |
Right ascension | 06h 44m 27.60507s[1] |
Declination | −32° 51′ 30.1793″[1] |
Apparent magnitude (V) | 12.29[2] |
Characteristics | |
Evolutionary stage | main-sequence star |
Spectral type | G7[2] |
Apparent magnitude (J) | 11.368[3] |
Apparent magnitude (H) | 11.079[3] |
Apparent magnitude (K) | 10.956[3] |
Astrometry | |
Radial velocity (Rv) | 34.40±1.23[1] km/s |
Proper motion (μ) | RA: -19.265 mas/yr[1] Dec.: -1.072 mas/yr[1] |
Parallax (π) | 2.7721±0.0102 mas[1] |
Distance | 1,177 ± 4 ly (361 ± 1 pc) |
Details[2] | |
Mass | 1.004±0.028 M☉ |
Radius | 1.058±0.025 R☉ |
Luminosity | 0.95±0.13 L☉ |
Surface gravity (log g) | 4.4±0.15 cgs |
Temperature | 5550±150 K |
Metallicity [Fe/H] | −0.08±0.11 dex |
Rotation | 15.8±3.7 d[4] |
Rotational velocity (v sin i) | 3.4±0.8 km/s |
Age | 3.554±1.629[4] Gyr |
Other designations | |
Atakoraka, TOI-473, TIC 52640302, WASP-64, GSC 07091-01514, 2MASS J06442760-3251302[3] | |
Database references | |
SIMBAD | data |
Exoplanet Archive | data |
WASP-64 is a star about 1,177 light-years away. It is a G7 class main-sequence star, orbited by a planet WASP-64b. It is younger than the Sun at 3.6±1.6 billion years,[4] and it has a metal abundance similar to the Sun.[2] The star is rotating rapidly, being spun up by the giant planet in a close orbit.[4]
WASP-64 was named Atakoraka in 2019 after the Atacora, the largest mountain range in Togo.[5] While an imaging survey in 2017 failed to find any stellar companions,[6] a 2019 survey using Gaia DR2 data found WASP-64 to be the secondary star in a binary system, with a wide separation of 24.2 arcseconds or 9,058 AU.[7] The primary star is designated TYC 7091-1288-1, and can also be called WASP-64 A, with the planet host being WASP-64 B.[8][9]
Planetary system
[edit]A transiting hot Jupiter exoplanet orbiting WASP-64 was discovered by WASP in 2012.[2] The planetary equilibrium temperature is 1672+59
−63 K,[2] while the measured dayside temperature is hotter at 1989+87
−88 K.[10] Due to the close proximity of the planet to the parent star, orbital decay of WASP-64b, along with HATS-2, may be detectable in the near future.[11] WASP-64b was named Agouto (after Mount Agou, the highest point of Togo which lies within the Atacora chain) in 2019 by amateur astronomers from Togo as part of the NameExoWorlds contest.[5]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b / Agouto | 1.221+0.073 −0.071 MJ |
0.02652+0.00024 −0.00025 |
1.5732918(15) | <0.054 | 86.57+0.80 −0.60° |
1.244±0.036[10] RJ |
References
[edit]- ^ a b c d e Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- ^ a b c d e f Gillon, M.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Montalban, J.; Pepe, F.; Pollacco, D.; Queloz, D.; Segransan, D.; Smith, A. M. S.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2012), "WASP-64b and WASP-72b: two new transiting highly irradiated giant planets", Astronomy & Astrophysics, 552: A82, arXiv:1210.4257, Bibcode:2013A&A...552A..82G, doi:10.1051/0004-6361/201220561, S2CID 53687206
- ^ a b c d "WASP-64". SIMBAD. Centre de données astronomiques de Strasbourg.
- ^ a b c d Gallet, F.; Gallet (2020), "TATOO: Tidal-chronology standalone tool to estimate the age of massive close-in planetary systems", Astronomy & Astrophysics, 641: A38, arXiv:2006.07880, Bibcode:2020A&A...641A..38G, doi:10.1051/0004-6361/202038058, S2CID 219687851
- ^ a b "Togo Approved Names". Name Exoworlds. International Astronomical Union. Retrieved 2020-11-12.
- ^ Evans, D. F.; Southworth, J.; Smalley, B.; Jørgensen, U. G.; Dominik, M.; Andersen, M. I.; Bozza, V.; Bramich, D. M.; Burgdorf, M. J.; Ciceri, S.; d'Ago, G.; Figuera Jaimes, R.; Gu, S.-H.; Hinse, T. C.; Henning, Th.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Kokotanekova, R.; Kuffmeier, M.; Longa-Peña, P.; Mancini, L.; MacKenzie, J.; Popovas, A.; Rabus, M.; Rahvar, S.; Sajadian, S.; Snodgrass, C.; et al. (2018), "High-resolution Imaging of Transiting Extrasolar Planetary systems (HITEP). II. Lucky Imaging results from 2015 and 2016", Astronomy & Astrophysics, 610: A20, arXiv:1709.07476, Bibcode:2018A&A...610A..20E, doi:10.1051/0004-6361/201731855, S2CID 53400492
- ^ Mugrauer, M. (December 2019). "Search for stellar companions of exoplanet host stars by exploring the second ESA-Gaia data release". Monthly Notices of the Royal Astronomical Society. 490 (4): 5088–5102. Bibcode:2019MNRAS.490.5088M. doi:10.1093/mnras/stz2673.
- ^ "TYC 7091-1288-1". SIMBAD. Centre de données astronomiques de Strasbourg.
- ^ "WASP-64 Overview". NASA Exoplanet Archive.
- ^ a b Wong, Ian; Shporer, Avi; Daylan, Tansu; Benneke, Björn; Fetherolf, Tara; Kane, Stephen R.; Ricker, George R.; Vanderspek, Roland; Latham, David W.; Winn, Joshua N.; Jenkins, Jon M.; Boyd, Patricia T.; Glidden, Ana; Goeke, Robert F.; Sha, Lizhou; Ting, Eric B.; Yahalomi, Daniel (2020), "Systematic phase curve study of known transiting systems from year one of the TESS mission", The Astronomical Journal, 160 (4): 155, arXiv:2003.06407, Bibcode:2020AJ....160..155W, doi:10.3847/1538-3881/ababad, S2CID 212717799
- ^ Southworth, John; Dominik, M.; Jørgensen, U. G.; Andersen, M. I.; Bozza, V.; Burgdorf, M. J.; d'Ago, G.; Dib, S.; Figuera Jaimes, R.; Fujii, Y. I.; Gill, S.; Haikala, L. K.; Hinse, T. C.; Hundertmark, M.; Khalouei, E.; Korhonen, H.; Longa-Peña, P.; Mancini, L.; Peixinho, N.; Rabus, M.; Rahvar, S.; Sajadian, S.; Skottfelt, J.; Snodgrass, C.; Spyratos, P.; Tregloan-Reed, J.; Unda-Sanzana, E.; von Essen, C. (2019), "Transit timing variations in the WASP-4 planetary system", Monthly Notices of the Royal Astronomical Society, 490 (3): 4230–4236, arXiv:1907.08269, doi:10.1093/mnras/stz2602, S2CID 197935338
- ^ Bonomo, A. S.; Desidera, S.; et al. (June 2017). "The GAPS Programme with HARPS-N at TNG. XIV. Investigating giant planet migration history via improved eccentricity and mass determination for 231 transiting planets". Astronomy & Astrophysics. 602: A107. arXiv:1704.00373. Bibcode:2017A&A...602A.107B. doi:10.1051/0004-6361/201629882. S2CID 118923163.